Mostrar el registro sencillo del ítem
dc.contributor.author | Cirugeda Roldán, Eva María | es_ES |
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | Miró Martínez, Pau | es_ES |
dc.contributor.author | Oltra Crespo, Sandra | es_ES |
dc.date.accessioned | 2015-06-22T11:58:34Z | |
dc.date.available | 2015-06-22T11:58:34Z | |
dc.date.issued | 2014-11 | |
dc.identifier.issn | 1099-4300 | |
dc.identifier.uri | http://hdl.handle.net/10251/52111 | |
dc.description.abstract | Entropy estimation metrics have become a widely used method to identify subtle changes or hidden features in biomedical records. These methods have been more effective than conventional linear techniques in a number of signal classification applications, specially the healthy pathological segmentation dichotomy. Nevertheless, a thorough characterization of these measures, namely, how to match metric and signal features, is still lacking. This paper studies a specific characterization problem: the influence of missing samples in biomedical records. The assessment is conducted using four of the most popular entropy metrics: Approximate Entropy, Sample Entropy, Fuzzy Entropy, and Detrended Fluctuation Analysis. The rationale of this study is that missing samples are a signal disturbance that can arise in many cases: signal compression, non-uniform sampling, or data transmission stages. It is of great interest to determine if these real situations can impair the capability of segmenting signal classes using such metrics. The experiments employed several biosignals: electroencephalograms, gait records, and RR time series. Samples of these signals were systematically removed, and the entropy computed for each case. The results showed that these metrics are robust against missing samples: With a data loss percentage of 50% or even higher, the methods were still able to distinguish among signal classes. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministry of Science and Innovation, research project TEC2009-14222. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Approximate entropy | es_ES |
dc.subject | Sample entropy | es_ES |
dc.subject | Fuzzy entropy | es_ES |
dc.subject | Detrended fluctuation analysis | es_ES |
dc.subject | Biosignal classification | es_ES |
dc.subject | Data loss | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Comparative study of entropy sensitivity to missing biosignal data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e16115901 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-14222/ES/Interpretacion Y Caracterizacion De Metodos De Analisis De Complejidad En El Contexto Del Procesado Biomedico De La Señal/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Cirugeda Roldan, EM.; Cuesta Frau, D.; Miró Martínez, P.; Oltra Crespo, S. (2014). Comparative study of entropy sensitivity to missing biosignal data. Entropy. 16(11):5901-5918. doi:10.3390/e16115901 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/e16115901 | es_ES |
dc.description.upvformatpinicio | 5901 | es_ES |
dc.description.upvformatpfin | 5918 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 277484 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Garrett, D., Peterson, D. A., Anderson, C. W., & Thaut, M. H. (2003). Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 141-144. doi:10.1109/tnsre.2003.814441 | es_ES |
dc.description.references | Alcaraz, R. (2013). Journal of Medical and Biological Engineering, 33(3), 239. doi:10.5405/jmbe.1401 | es_ES |
dc.description.references | Muller, K., Anderson, C. W., & Birch, G. E. (2003). Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 165-169. doi:10.1109/tnsre.2003.814484 | es_ES |
dc.description.references | Gao, J., Hu, J., & Tung, W. (2011). Entropy measures for biological signal analyses. Nonlinear Dynamics, 68(3), 431-444. doi:10.1007/s11071-011-0281-2 | es_ES |
dc.description.references | Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87. doi:10.1063/1.166141 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2010). A novel application of sample entropy to the electrocardiogram of atrial fibrillation. Nonlinear Analysis: Real World Applications, 11(2), 1026-1035. doi:10.1016/j.nonrwa.2009.01.047 | es_ES |
dc.description.references | Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002 | es_ES |
dc.description.references | Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 | es_ES |
dc.description.references | Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355 | es_ES |
dc.description.references | Abasolo, D., Hornero, R., Escudero, J., & Espino, P. (2008). A Study on the Possible Usefulness of Detrended Fluctuation Analysis of the Electroencephalogram Background Activity in Alzheimer’s Disease. IEEE Transactions on Biomedical Engineering, 55(9), 2171-2179. doi:10.1109/tbme.2008.923145 | es_ES |
dc.description.references | Hwa, R. C., & Ferree, T. C. (2002). Scaling properties of fluctuations in the human electroencephalogram. Physical Review E, 66(2). doi:10.1103/physreve.66.021901 | es_ES |
dc.description.references | Lee, J.-M., Kim, D.-J., Kim, I.-Y., Park, K.-S., & Kim, S. I. (2002). Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Computers in Biology and Medicine, 32(1), 37-47. doi:10.1016/s0010-4825(01)00031-2 | es_ES |
dc.description.references | Jospin, M., Caminal, P., Jensen, E. W., Litvan, H., Vallverdu, M., Struys, M. M. R. F., … Kaplan, D. T. (2007). Detrended Fluctuation Analysis of EEG as a Measure of Depth of Anesthesia. IEEE Transactions on Biomedical Engineering, 54(5), 840-846. doi:10.1109/tbme.2007.893453 | es_ES |
dc.description.references | Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907 | es_ES |
dc.description.references | Radhakrishnan, N., & Gangadhar, B. N. (1998). Estimating regularity in epileptic seizure time-series data. IEEE Engineering in Medicine and Biology Magazine, 17(3), 89-94. doi:10.1109/51.677174 | es_ES |
dc.description.references | Burnsed, J., Quigg, M., Zanelli, S., & Goodkin, H. P. (2011). Clinical Severity, Rather Than Body Temperature, During the Rewarming Phase of Therapeutic Hypothermia Affect Quantitative EEG in Neonates With Hypoxic Ischemic Encephalopathy. Journal of Clinical Neurophysiology, 28(1), 10-14. doi:10.1097/wnp.0b013e318205134b | es_ES |
dc.description.references | Deffeyes, J. E., Harbourne, R. T., DeJong, S. L., Kyvelidou, A., Stuberg, W. A., & Stergiou, N. (2009). Use of information entropy measures of sitting postural sway to quantify developmental delay in infants. Journal of NeuroEngineering and Rehabilitation, 6(1), 34. doi:10.1186/1743-0003-6-34 | es_ES |
dc.description.references | Moorman, J. R., Delos, J. B., Flower, A. A., Cao, H., Kovatchev, B. P., Richman, J. S., & Lake, D. E. (2011). Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiological Measurement, 32(11), 1821-1832. doi:10.1088/0967-3334/32/11/s08 | es_ES |
dc.description.references | Zhang, D., Ding, H., Liu, Y., Zhou, C., Ding, H., & Ye, D. (2009). Neurodevelopment in newborns: a sample entropy analysis of electroencephalogram. Physiological Measurement, 30(5), 491-504. doi:10.1088/0967-3334/30/5/006 | es_ES |
dc.description.references | Veiga, J., Lopes, A. J., Jansen, J. M., & Melo, P. L. (2011). Airflow pattern complexity and airway obstruction in asthma. Journal of Applied Physiology, 111(2), 412-419. doi:10.1152/japplphysiol.00267.2011 | es_ES |
dc.description.references | Albuerne-Sanchez, L., Gonzalez-Camarena, R., Mejia-Avila, M., Carrillo-Rodriguez, G., Aljama-Corrales, T., & Charleston-Villalobos, S. (2013). Linear and Nonlinear Analysis of Base Lung Sound in Extrinsic Allergic Alveolitis Patients in Comparison to Healthy Subjects. Methods of Information in Medicine, 52(03), 266-276. doi:10.3414/me12-01-0037 | es_ES |
dc.description.references | Jing Hu, Jianbo Gao, & Principe, J. C. (2006). Analysis of Biomedical Signals by the Lempel-Ziv Complexity: the Effect of Finite Data Size. IEEE Transactions on Biomedical Engineering, 53(12), 2606-2609. doi:10.1109/tbme.2006.883825 | es_ES |
dc.description.references | Maestri, R., Pinna, G. D., Porta, A., Balocchi, R., Sassi, R., Signorini, M. G., … Raczak, G. (2007). Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiological Measurement, 28(9), 1067-1077. doi:10.1088/0967-3334/28/9/008 | es_ES |
dc.description.references | Hornero, R., Aboy, M., Abasolo, D., McNames, J., & Goldstein, B. (2005). Interpretation of Approximate Entropy: Analysis of Intracranial Pressure Approximate Entropy During Acute Intracranial Hypertension. IEEE Transactions on Biomedical Engineering, 52(10), 1671-1680. doi:10.1109/tbme.2005.855722 | es_ES |
dc.description.references | Escudero, J., Hornero, R., & Abásolo, D. (2009). Interpretation of the auto-mutual information rate of decrease in the context of biomedical signal analysis. Application to electroencephalogram recordings. Physiological Measurement, 30(2), 187-199. doi:10.1088/0967-3334/30/2/006 | es_ES |
dc.description.references | Aboy, M., Hornero, R., Abasolo, D., & Alvarez, D. (2006). Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis. IEEE Transactions on Biomedical Engineering, 53(11), 2282-2288. doi:10.1109/tbme.2006.883696 | es_ES |
dc.description.references | Garcia-Gonzalez, M. A., Fernandez-Chimeno, M., & Ramos-Castro, J. (2009). Errors in the Estimation of Approximate Entropy and Other Recurrence-Plot-Derived Indices Due to the Finite Resolution of RR Time Series. IEEE Transactions on Biomedical Engineering, 56(2), 345-351. doi:10.1109/tbme.2008.2005951 | es_ES |
dc.description.references | Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 | es_ES |
dc.description.references | Bao, Y., Li, H., Sun, X., Yu, Y., & Ou, J. (2012). Compressive sampling–based data loss recovery for wireless sensor networks used in civil structural health monitoring. Structural Health Monitoring: An International Journal, 12(1), 78-95. doi:10.1177/1475921712462936 | es_ES |
dc.description.references | Cuesta-Frau, D., Pérez-Cortés, J. C., & Andreu-Garcı́a, G. (2003). Clustering of electrocardiograph signals in computer-aided Holter analysis. Computer Methods and Programs in Biomedicine, 72(3), 179-196. doi:10.1016/s0169-2607(02)00145-1 | es_ES |
dc.description.references | Chon, K. H., Scully, C. G., & Lu, S. (2009). Approximate entropy for all signals. IEEE Engineering in Medicine and Biology Magazine, 28(6), 18-23. doi:10.1109/memb.2009.934629 | es_ES |
dc.description.references | Hu, X., Miller, C., Vespa, P., & Bergsneider, M. (2008). Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals. Medical Engineering & Physics, 30(5), 631-639. doi:10.1016/j.medengphy.2007.07.002 | es_ES |
dc.description.references | Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481 | es_ES |
dc.description.references | Weiting Chen, Zhizhong Wang, Hongbo Xie, & Wangxin Yu. (2007). Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2), 266-272. doi:10.1109/tnsre.2007.897025 | es_ES |
dc.description.references | Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 | es_ES |
dc.description.references | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x | es_ES |
dc.description.references | Xie, H.-B., Chen, W.-T., He, W.-X., & Liu, H. (2011). Complexity analysis of the biomedical signal using fuzzy entropy measurement. Applied Soft Computing, 11(2), 2871-2879. doi:10.1016/j.asoc.2010.11.020 | es_ES |
dc.description.references | Govindan, R. B., Wilson, J. D., Preißl, H., Eswaran, H., Campbell, J. Q., & Lowery, C. L. (2007). Detrended fluctuation analysis of short datasets: An application to fetal cardiac data. Physica D: Nonlinear Phenomena, 226(1), 23-31. doi:10.1016/j.physd.2006.10.019 | es_ES |
dc.description.references | Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 | es_ES |
dc.description.references | Effect of the Antiarrhythmic Agent Moricizine on Survival after Myocardial Infarction. (1992). New England Journal of Medicine, 327(4), 227-233. doi:10.1056/nejm199207233270403 | es_ES |
dc.description.references | (1989). Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression after Myocardial Infarction. New England Journal of Medicine, 321(6), 406-412. doi:10.1056/nejm198908103210629 | es_ES |
dc.description.references | The Caps Investigators. (1986). The cardiac arrhythmia pilot study. The American Journal of Cardiology, 57(1), 91-95. doi:10.1016/0002-9149(86)90958-6 | es_ES |
dc.description.references | Molina–Picó, A., Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., & Aboy, M. (2013). Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. Computer Methods and Programs in Biomedicine, 110(1), 2-11. doi:10.1016/j.cmpb.2012.10.014 | es_ES |
dc.description.references | Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E., Wei, J. Y., & Goldberger, A. L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. Journal of Applied Physiology, 82(1), 262-269. doi:10.1152/jappl.1997.82.1.262 | es_ES |
dc.description.references | Hausdorff, J. M., Lertratanakul, A., Cudkowicz, M. E., Peterson, A. L., Kaliton, D., & Goldberger, A. L. (2000). Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. Journal of Applied Physiology, 88(6), 2045-2053. doi:10.1152/jappl.2000.88.6.2045 | es_ES |
dc.description.references | Cirugeda-Roldán, E. M., Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Vigil-Medina, L., & Varela-Entrecanales, M. (2014). A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Computer Methods and Programs in Biomedicine, 114(3), 231-239. doi:10.1016/j.cmpb.2014.02.008 | es_ES |