- -

High-pressure structural and elastic properties of Tl2O3

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

High-pressure structural and elastic properties of Tl2O3

Show full item record

Gomis, O.; Santamaría-Pérez, D.; Ruiz-Fuertes, J.; Sans, JA.; Vilaplana Cerda, RI.; Ortiz, HM.; García-Domene, B.... (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics. 116(13):133521-1-133521-9. https://doi.org/10.1063/1.4897241

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52208

Files in this item

Item Metadata

Title: High-pressure structural and elastic properties of Tl2O3
Author: Gomis, O. Santamaría-Pérez, D. Ruiz-Fuertes, J. Sans, J. A. Vilaplana Cerda, Rosario Isabel Ortiz, H. M. García-Domene, B. Manjón Herrera, Francisco Javier Errandonea, D. Rodríguez-Hernández, P. Muñoz, A. Mollar García, Miguel Alfonso
UPV Unit: Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been ...[+]
Subjects: Initio molecular-dynamics , Total-Energy calculations , Crystal thallic oxide , Augmented-wave method , X-Ray Diffraction , Single crystal , Phase-transformation , High-temperature , Electrical-conduction , Induced amorphization
Copyrigths: Reserva de todos los derechos
Journal of Applied Physics. (issn: 0021-8979 ) (eissn: 1089-7550 )
DOI: 10.1063/1.4897241
American Institute of Physics (AIP)
Publisher version: http://dx.doi.org/10.1063/1.4897241
Project ID:
info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/
info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/
info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
This study was supported by the Spanish government MEC under Grant Nos. MAT2010-21270-C04-01/03/04, MAT2013-46649-C4-1/2/3-P, and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ-1551 ...[+]
Type: Artículo


Papamantellos, P. (1968). Verfeinerung der Tl2O3-Struktur mittels Neutronenbeugung. Zeitschrift für Kristallographie, 126(1-3), 143-146. doi:10.1524/zkri.1968.126.1-3.143

Otto, H. H., Baltrusch, R., & Brandt, H.-J. (1993). Further evidence for Tl3+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3. Physica C: Superconductivity, 215(1-2), 205-208. doi:10.1016/0921-4534(93)90382-z

Berastegui, P., Eriksson, S., Hull, S., Garcı́a Garcı́a, F. ., & Eriksen, J. (2004). Synthesis and crystal structure of the alkaline-earth thallates MnTl2O3+n (M=Ca,Sr). Solid State Sciences, 6(5), 433-441. doi:10.1016/j.solidstatesciences.2004.03.003 [+]
Papamantellos, P. (1968). Verfeinerung der Tl2O3-Struktur mittels Neutronenbeugung. Zeitschrift für Kristallographie, 126(1-3), 143-146. doi:10.1524/zkri.1968.126.1-3.143

Otto, H. H., Baltrusch, R., & Brandt, H.-J. (1993). Further evidence for Tl3+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3. Physica C: Superconductivity, 215(1-2), 205-208. doi:10.1016/0921-4534(93)90382-z

Berastegui, P., Eriksson, S., Hull, S., Garcı́a Garcı́a, F. ., & Eriksen, J. (2004). Synthesis and crystal structure of the alkaline-earth thallates MnTl2O3+n (M=Ca,Sr). Solid State Sciences, 6(5), 433-441. doi:10.1016/j.solidstatesciences.2004.03.003

Prewitt, C. T., Shannon, R. D., Rogers, D. B., & Sleight, A. W. (1969). C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorganic Chemistry, 8(9), 1985-1993. doi:10.1021/ic50079a033

Patra, C. R., & Gedanken, A. (2004). Rapid synthesis of nanoparticles of hexagonal type In2O3 and spherical type Tl2O3 by microwave irradiation. New Journal of Chemistry, 28(8), 1060. doi:10.1039/b400206g

Switzer, J. A. (1986). The n-Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society, 133(4), 722. doi:10.1149/1.2108662

Phillips, R. J., Shane, M. J., & Switzer, J. A. (1989). Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. Journal of Materials Research, 4(4), 923-929. doi:10.1557/jmr.1989.0923

Van Leeuwen, R. A., Hung, C.-J., Kammler, D. R., & Switzer, J. A. (1995). Optical and Electronic Transport Properties of Electrodeposited Thallium(III) Oxide Films. The Journal of Physical Chemistry, 99(41), 15247-15252. doi:10.1021/j100041a047

Bhattacharya, R. N. (2010). Thallium-Oxide Superconductors. High Temperature Superconductors, 129-151. doi:10.1002/9783527631049.ch6

Weaver, C. D., Harden, D., Dworetzky, S. I., Robertson, B., & Knox, R. J. (2004). A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells. Journal of Biomolecular Screening, 9(8), 671-677. doi:10.1177/1087057104268749

Geserich, H. P. (1968). Optische und elektrische Messungen an dünnen Thallium(III)-Oxydschichten. Physica Status Solidi (b), 25(2), 741-751. doi:10.1002/pssb.19680250227

Goto, A., Yasuoka, H., Hayashi, A., & Ueda, Y. (1992). NMR Study of Metallic Thallic Oxides; Tl2O3-δ. Journal of the Physical Society of Japan, 61(4), 1178-1181. doi:10.1143/jpsj.61.1178

Glans, P.-A., Learmonth, T., Smith, K. E., Guo, J., Walsh, A., Watson, G. W., … Egdell, R. G. (2005). Experimental and theoretical study of the electronic structure of HgO andTl2O3. Physical Review B, 71(23). doi:10.1103/physrevb.71.235109

Kehoe, A. B., Scanlon, D. O., & Watson, G. W. (2011). Nature of the band gap ofTl2O3. Physical Review B, 83(23). doi:10.1103/physrevb.83.233202

SHUKLA, V. N., & WIRTZ, G. P. (1977). Electrical Conduction in Single-Crystal Thallic Oxide: I, Crystals «As-Grown» from the Vapor in Air. Journal of the American Ceramic Society, 60(5-6), 253-258. doi:10.1111/j.1151-2916.1977.tb14119.x

SHUKLA, V. N., & WIRTZ, G. P. (1977). Electrical Conduction in Single-Crystal Thallic Oxide: II, Effects of Annealing at 923oK in Oxygen Pressures from 0.01 to 1 Atmosphere. Journal of the American Ceramic Society, 60(5-6), 259-261. doi:10.1111/j.1151-2916.1977.tb14120.x

WIRTZ, G. P., YU, C. J., & DOSER, R. W. (1981). Defect Chemistry and Electrical Properties of Thallium Oxide Single Crystals. Journal of the American Ceramic Society, 64(5), 269-275. doi:10.1111/j.1151-2916.1981.tb09600.x

Yokoo, M., Kawai, N., Nakamura, K. G., Kondo, K., Tange, Y., & Tsuchiya, T. (2009). Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Physical Review B, 80(10). doi:10.1103/physrevb.80.104114

Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408

Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07

Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920

A. C. Larson and R. B. von Dreele , LANL Report No. 86–748, 2004.

Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863

Chetty, N., Muoz, A., & Martin, R. M. (1989). First-principles calculation of the elastic constants of AlAs. Physical Review B, 40(17), 11934-11936. doi:10.1103/physrevb.40.11934

Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515

Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104

Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Physical Review B, 63(13). doi:10.1103/physrevb.63.134112

Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121

He, D., & Duffy, T. S. (2006). X-ray diffraction study of the static strength of tungsten to69GPa. Physical Review B, 73(13). doi:10.1103/physrevb.73.134106

Errandonea, D., Boehler, R., Japel, S., Mezouar, M., & Benedetti, L. R. (2006). Structural transformation of compressed solid Ar: An x-ray diffraction study to114GPa. Physical Review B, 73(9). doi:10.1103/physrevb.73.092106

Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413

Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257

Angel, R. J. (2000). Equations of State. Reviews in Mineralogy and Geochemistry, 41(1), 35-59. doi:10.2138/rmg.2000.41.2

Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369

Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363

García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599

Angel, R. ., Mosenfelder, J. ., & Shaw, C. S. . (2001). Anomalous compression and equation of state of coesite. Physics of the Earth and Planetary Interiors, 124(1-2), 71-79. doi:10.1016/s0031-9201(01)00184-4

Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108

Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402

Choudhury, N., & Chaplot, S. L. (2006). Ab initiostudies of phonon softening and high-pressure phase transitions ofα-quartzSiO2. Physical Review B, 73(9). doi:10.1103/physrevb.73.094304

Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107

Yusa, H., Tsuchiya, T., Tsuchiya, J., Sata, N., & Ohishi, Y. (2008). α-Gd2S3-type structure inIn2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Physical Review B, 78(9). doi:10.1103/physrevb.78.092107

Gurlo, A., Dzivenko, D., Kroll, P., & Riedel, R. (2008). High-pressure high-temperature synthesis of Rh2O3-II-type In2O3polymorph. physica status solidi (RRL) - Rapid Research Letters, 2(6), 269-271. doi:10.1002/pssr.200802201

Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Stewart, A., … Gurlo, A. (2013). In situhigh pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In2O3and synthesis of corundum-type and orthorhombic In2O3polymorphs. High Pressure Research, 33(3), 697-711. doi:10.1080/08957959.2013.834896

Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Riedel, R., & Gurlo, A. (2013). Orthorhombic In2O3: A Metastable Polymorph of Indium Sesquioxide. Angewandte Chemie International Edition, 52(25), 6531-6535. doi:10.1002/anie.201300644

Biesterbos, J. W. M., & Hornstra, J. (1973). The crystal structure of the high-temperature, low-pressure form of Rh2O3. Journal of the Less Common Metals, 30(1), 121-125. doi:10.1016/0022-5088(73)90013-1

Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082

Husson, E., Proust, C., Gillet, P., & Itié, J. . (1999). Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Materials Research Bulletin, 34(12-13), 2085-2092. doi:10.1016/s0025-5408(99)00205-6

Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187

Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154g

Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019

Nishio-Hamane, D., Katagiri, M., Niwa, K., Sano-Furukawa, A., Okada, T., & Yagi, T. (2009). A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Research, 29(3), 379-388. doi:10.1080/08957950802665747

Ovsyannikov, S. V., Wu, X., Shchennikov, V. V., Karkin, A. E., Dubrovinskaia, N., Garbarino, G., & Dubrovinsky, L. (2010). Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3under high pressures and high temperatures. Journal of Physics: Condensed Matter, 22(37), 375402. doi:10.1088/0953-8984/22/37/375402

Ono, S., Funakoshi, K., Ohishi, Y., & Takahashi, E. (2005). In situx-ray observation of the phase transformation of Fe2O3. Journal of Physics: Condensed Matter, 17(2), 269-276. doi:10.1088/0953-8984/17/2/003

Santillán, J., Shim, S.-H., Shen, G., & Prakapenka, V. B. (2006). High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3type. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026423

Yao, H., Ouyang, L., & Ching, W.-Y. (2007). Ab Initio Calculation of Elastic Constants of Ceramic Crystals. Journal of the American Ceramic Society, 90(10), 3194-3204. doi:10.1111/j.1551-2916.2007.01931.x

Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160-172. doi:10.1017/s0305004100017138

Wallace, D. C. (1970). Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants. Solid State Physics, 301-404. doi:10.1016/s0081-1947(08)60010-7

Wang, J., Yip, S., Phillpot, S. R., & Wolf, D. (1993). Crystal instabilities at finite strain. Physical Review Letters, 71(25), 4182-4185. doi:10.1103/physrevlett.71.4182

Wang, J., Li, J., Yip, S., Phillpot, S., & Wolf, D. (1995). Mechanical instabilities of homogeneous crystals. Physical Review B, 52(17), 12627-12635. doi:10.1103/physrevb.52.12627

Karki, B. B., Stixrude, L., & Wentzcovitch, R. M. (2001). High-pressure elastic properties of major materials of Earth’s mantle from first principles. Reviews of Geophysics, 39(4), 507-534. doi:10.1029/2000rg000088

Krasilnikov, O. M., Belov, M. P., Lugovskoy, A. V., Mosyagin, I. Y., & Vekilov, Y. K. (2014). Elastic properties, lattice dynamics and structural transitions in molybdenum at high pressures. Computational Materials Science, 81, 313-318. doi:10.1016/j.commatsci.2013.08.038

Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58. doi:10.1002/zamm.19290090104

Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349-354. doi:10.1088/0370-1298/65/5/307

Wu, Z., Zhao, E., Xiang, H., Hao, X., Liu, X., & Meng, J. (2007). Crystal structures and elastic properties of superhardIrN2andIrN3from first principles. Physical Review B, 76(5). doi:10.1103/physrevb.76.054115

Caracas, R., & Boffa Ballaran, T. (2010). Elasticity of (K,Na)AlSi3O8 hollandite from lattice dynamics calculations. Physics of the Earth and Planetary Interiors, 181(1-2), 21-26. doi:10.1016/j.pepi.2010.04.004

Liu, Q.-J., Liu, Z.-T., & Feng, L.-P. (2011). First-Principles Calculations of Structural, Elastic and Electronic Properties of Tetragonal HfO2under Pressure. Communications in Theoretical Physics, 56(4), 779-784. doi:10.1088/0253-6102/56/4/31

Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496

Grimvall, G., Magyari-Köpe, B., Ozoliņš, V., & Persson, K. A. (2012). Lattice instabilities in metallic elements. Reviews of Modern Physics, 84(2), 945-986. doi:10.1103/revmodphys.84.945

Sharma, S. M., & Sikka, S. K. (1996). Pressure induced amorphization of materials. Progress in Materials Science, 40(1), 1-77. doi:10.1016/0079-6425(95)00006-2

Richet, P., & Gillet, P. (1997). Pressure-induced amorphization of minerals: a review. European Journal of Mineralogy, 9(5), 907-934. doi:10.1127/ejm/9/5/0907




This item appears in the following Collection(s)

Show full item record