- -

High-pressure structural and elastic properties of Tl2O3

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-pressure structural and elastic properties of Tl2O3

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomis, O. es_ES
dc.contributor.author Santamaría-Pérez, D. es_ES
dc.contributor.author Ruiz-Fuertes, J. es_ES
dc.contributor.author Sans, J. A. es_ES
dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Ortiz, H. M. es_ES
dc.contributor.author García-Domene, B. es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Rodríguez-Hernández, P. es_ES
dc.contributor.author Muñoz, A. es_ES
dc.contributor.author Mollar García, Miguel Alfonso es_ES
dc.date.accessioned 2015-06-24T11:45:49Z
dc.date.available 2015-06-24T11:45:49Z
dc.date.issued 2014-10-07
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/52208
dc.description.abstract The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl2O3 has been determined and compared to related compounds. It has been found experimentally that Tl2O3 remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl2O3. Although a phase transition is theoretically predicted at 5.8 GPa to the orthorhombic Rh2O3-II-type structure and at 24.2 GPa to the orthorhombic alpha-Gd2S3-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa. (C) 2014 AIP Publishing LLC. es_ES
dc.description.sponsorship This study was supported by the Spanish government MEC under Grant Nos. MAT2010-21270-C04-01/03/04, MAT2013-46649-C4-1/2/3-P, and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ-1551 4161893), by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by Generalitat Valenciana (GVA-ACOMP-2013-1012 and GVA-ACOMP-2014-243). We acknowledge Diamond Light Source for time on beamline I15 under proposal EE6517 and I15 beamline scientist for technical support. A.M. and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. B.G.-D. and J.A.S. acknowledge financial support through the FPI program and Juan de la Cierva fellowship. J.R.-F. acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Initio molecular-dynamics es_ES
dc.subject Total-Energy calculations es_ES
dc.subject Crystal thallic oxide es_ES
dc.subject Augmented-wave method es_ES
dc.subject X-Ray Diffraction es_ES
dc.subject Single crystal es_ES
dc.subject Phase-transformation es_ES
dc.subject High-temperature es_ES
dc.subject Electrical-conduction es_ES
dc.subject Induced amorphization es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title High-pressure structural and elastic properties of Tl2O3 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4897241
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2010-21270-C04-01/03/04/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2013-46649-C4-1/2/3-P/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2009-14596-C02-01/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GVA-ACOMP-2013-1012/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GVA-ACOMP-2014-243/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Gomis, O.; Santamaría-Pérez, D.; Ruiz-Fuertes, J.; Sans, JA.; Vilaplana Cerda, RI.; Ortiz, HM.; García-Domene, B.... (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics. 116(13):133521-1-133521-9. https://doi.org/10.1063/1.4897241 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4897241 es_ES
dc.description.upvformatpinicio 133521-1 es_ES
dc.description.upvformatpfin 133521-9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 271555
dc.identifier.eissn 1089-7550
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Comunidad de Madrid
dc.contributor.funder Generalitat Valenciana
dc.description.references Papamantellos, P. (1968). Verfeinerung der Tl2O3-Struktur mittels Neutronenbeugung. Zeitschrift für Kristallographie, 126(1-3), 143-146. doi:10.1524/zkri.1968.126.1-3.143 es_ES
dc.description.references Otto, H. H., Baltrusch, R., & Brandt, H.-J. (1993). Further evidence for Tl3+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3. Physica C: Superconductivity, 215(1-2), 205-208. doi:10.1016/0921-4534(93)90382-z es_ES
dc.description.references Berastegui, P., Eriksson, S., Hull, S., Garcı́a Garcı́a, F. ., & Eriksen, J. (2004). Synthesis and crystal structure of the alkaline-earth thallates MnTl2O3+n (M=Ca,Sr). Solid State Sciences, 6(5), 433-441. doi:10.1016/j.solidstatesciences.2004.03.003 es_ES
dc.description.references Prewitt, C. T., Shannon, R. D., Rogers, D. B., & Sleight, A. W. (1969). C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorganic Chemistry, 8(9), 1985-1993. doi:10.1021/ic50079a033 es_ES
dc.description.references Patra, C. R., & Gedanken, A. (2004). Rapid synthesis of nanoparticles of hexagonal type In2O3 and spherical type Tl2O3 by microwave irradiation. New Journal of Chemistry, 28(8), 1060. doi:10.1039/b400206g es_ES
dc.description.references Switzer, J. A. (1986). The n-Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society, 133(4), 722. doi:10.1149/1.2108662 es_ES
dc.description.references Phillips, R. J., Shane, M. J., & Switzer, J. A. (1989). Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. Journal of Materials Research, 4(4), 923-929. doi:10.1557/jmr.1989.0923 es_ES
dc.description.references Van Leeuwen, R. A., Hung, C.-J., Kammler, D. R., & Switzer, J. A. (1995). Optical and Electronic Transport Properties of Electrodeposited Thallium(III) Oxide Films. The Journal of Physical Chemistry, 99(41), 15247-15252. doi:10.1021/j100041a047 es_ES
dc.description.references Bhattacharya, R. N. (2010). Thallium-Oxide Superconductors. High Temperature Superconductors, 129-151. doi:10.1002/9783527631049.ch6 es_ES
dc.description.references Weaver, C. D., Harden, D., Dworetzky, S. I., Robertson, B., & Knox, R. J. (2004). A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells. Journal of Biomolecular Screening, 9(8), 671-677. doi:10.1177/1087057104268749 es_ES
dc.description.references Geserich, H. P. (1968). Optische und elektrische Messungen an dünnen Thallium(III)-Oxydschichten. Physica Status Solidi (b), 25(2), 741-751. doi:10.1002/pssb.19680250227 es_ES
dc.description.references Goto, A., Yasuoka, H., Hayashi, A., & Ueda, Y. (1992). NMR Study of Metallic Thallic Oxides; Tl2O3-δ. Journal of the Physical Society of Japan, 61(4), 1178-1181. doi:10.1143/jpsj.61.1178 es_ES
dc.description.references Glans, P.-A., Learmonth, T., Smith, K. E., Guo, J., Walsh, A., Watson, G. W., … Egdell, R. G. (2005). Experimental and theoretical study of the electronic structure of HgO andTl2O3. Physical Review B, 71(23). doi:10.1103/physrevb.71.235109 es_ES
dc.description.references Kehoe, A. B., Scanlon, D. O., & Watson, G. W. (2011). Nature of the band gap ofTl2O3. Physical Review B, 83(23). doi:10.1103/physrevb.83.233202 es_ES
dc.description.references SHUKLA, V. N., & WIRTZ, G. P. (1977). Electrical Conduction in Single-Crystal Thallic Oxide: I, Crystals «As-Grown» from the Vapor in Air. Journal of the American Ceramic Society, 60(5-6), 253-258. doi:10.1111/j.1151-2916.1977.tb14119.x es_ES
dc.description.references SHUKLA, V. N., & WIRTZ, G. P. (1977). Electrical Conduction in Single-Crystal Thallic Oxide: II, Effects of Annealing at 923oK in Oxygen Pressures from 0.01 to 1 Atmosphere. Journal of the American Ceramic Society, 60(5-6), 259-261. doi:10.1111/j.1151-2916.1977.tb14120.x es_ES
dc.description.references WIRTZ, G. P., YU, C. J., & DOSER, R. W. (1981). Defect Chemistry and Electrical Properties of Thallium Oxide Single Crystals. Journal of the American Ceramic Society, 64(5), 269-275. doi:10.1111/j.1151-2916.1981.tb09600.x es_ES
dc.description.references Yokoo, M., Kawai, N., Nakamura, K. G., Kondo, K., Tange, Y., & Tsuchiya, T. (2009). Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Physical Review B, 80(10). doi:10.1103/physrevb.80.104114 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07 es_ES
dc.description.references Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920 es_ES
dc.description.references A. C. Larson and R. B. von Dreele , LANL Report No. 86–748, 2004. es_ES
dc.description.references Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Chetty, N., Muoz, A., & Martin, R. M. (1989). First-principles calculation of the elastic constants of AlAs. Physical Review B, 40(17), 11934-11936. doi:10.1103/physrevb.40.11934 es_ES
dc.description.references Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515 es_ES
dc.description.references Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104 es_ES
dc.description.references Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Physical Review B, 63(13). doi:10.1103/physrevb.63.134112 es_ES
dc.description.references Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121 es_ES
dc.description.references He, D., & Duffy, T. S. (2006). X-ray diffraction study of the static strength of tungsten to69GPa. Physical Review B, 73(13). doi:10.1103/physrevb.73.134106 es_ES
dc.description.references Errandonea, D., Boehler, R., Japel, S., Mezouar, M., & Benedetti, L. R. (2006). Structural transformation of compressed solid Ar: An x-ray diffraction study to114GPa. Physical Review B, 73(9). doi:10.1103/physrevb.73.092106 es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257 es_ES
dc.description.references Angel, R. J. (2000). Equations of State. Reviews in Mineralogy and Geochemistry, 41(1), 35-59. doi:10.2138/rmg.2000.41.2 es_ES
dc.description.references Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369 es_ES
dc.description.references Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363 es_ES
dc.description.references García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599 es_ES
dc.description.references Angel, R. ., Mosenfelder, J. ., & Shaw, C. S. . (2001). Anomalous compression and equation of state of coesite. Physics of the Earth and Planetary Interiors, 124(1-2), 71-79. doi:10.1016/s0031-9201(01)00184-4 es_ES
dc.description.references Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108 es_ES
dc.description.references Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402 es_ES
dc.description.references Choudhury, N., & Chaplot, S. L. (2006). Ab initiostudies of phonon softening and high-pressure phase transitions ofα-quartzSiO2. Physical Review B, 73(9). doi:10.1103/physrevb.73.094304 es_ES
dc.description.references Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107 es_ES
dc.description.references Yusa, H., Tsuchiya, T., Tsuchiya, J., Sata, N., & Ohishi, Y. (2008). α-Gd2S3-type structure inIn2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Physical Review B, 78(9). doi:10.1103/physrevb.78.092107 es_ES
dc.description.references Gurlo, A., Dzivenko, D., Kroll, P., & Riedel, R. (2008). High-pressure high-temperature synthesis of Rh2O3-II-type In2O3polymorph. physica status solidi (RRL) - Rapid Research Letters, 2(6), 269-271. doi:10.1002/pssr.200802201 es_ES
dc.description.references Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Stewart, A., … Gurlo, A. (2013). In situhigh pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In2O3and synthesis of corundum-type and orthorhombic In2O3polymorphs. High Pressure Research, 33(3), 697-711. doi:10.1080/08957959.2013.834896 es_ES
dc.description.references Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Riedel, R., & Gurlo, A. (2013). Orthorhombic In2O3: A Metastable Polymorph of Indium Sesquioxide. Angewandte Chemie International Edition, 52(25), 6531-6535. doi:10.1002/anie.201300644 es_ES
dc.description.references Biesterbos, J. W. M., & Hornstra, J. (1973). The crystal structure of the high-temperature, low-pressure form of Rh2O3. Journal of the Less Common Metals, 30(1), 121-125. doi:10.1016/0022-5088(73)90013-1 es_ES
dc.description.references Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082 es_ES
dc.description.references Husson, E., Proust, C., Gillet, P., & Itié, J. . (1999). Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Materials Research Bulletin, 34(12-13), 2085-2092. doi:10.1016/s0025-5408(99)00205-6 es_ES
dc.description.references Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187 es_ES
dc.description.references Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154g es_ES
dc.description.references Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019 es_ES
dc.description.references Nishio-Hamane, D., Katagiri, M., Niwa, K., Sano-Furukawa, A., Okada, T., & Yagi, T. (2009). A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Research, 29(3), 379-388. doi:10.1080/08957950802665747 es_ES
dc.description.references Ovsyannikov, S. V., Wu, X., Shchennikov, V. V., Karkin, A. E., Dubrovinskaia, N., Garbarino, G., & Dubrovinsky, L. (2010). Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3under high pressures and high temperatures. Journal of Physics: Condensed Matter, 22(37), 375402. doi:10.1088/0953-8984/22/37/375402 es_ES
dc.description.references Ono, S., Funakoshi, K., Ohishi, Y., & Takahashi, E. (2005). In situx-ray observation of the phase transformation of Fe2O3. Journal of Physics: Condensed Matter, 17(2), 269-276. doi:10.1088/0953-8984/17/2/003 es_ES
dc.description.references Santillán, J., Shim, S.-H., Shen, G., & Prakapenka, V. B. (2006). High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3type. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026423 es_ES
dc.description.references Yao, H., Ouyang, L., & Ching, W.-Y. (2007). Ab Initio Calculation of Elastic Constants of Ceramic Crystals. Journal of the American Ceramic Society, 90(10), 3194-3204. doi:10.1111/j.1551-2916.2007.01931.x es_ES
dc.description.references Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160-172. doi:10.1017/s0305004100017138 es_ES
dc.description.references Wallace, D. C. (1970). Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants. Solid State Physics, 301-404. doi:10.1016/s0081-1947(08)60010-7 es_ES
dc.description.references Wang, J., Yip, S., Phillpot, S. R., & Wolf, D. (1993). Crystal instabilities at finite strain. Physical Review Letters, 71(25), 4182-4185. doi:10.1103/physrevlett.71.4182 es_ES
dc.description.references Wang, J., Li, J., Yip, S., Phillpot, S., & Wolf, D. (1995). Mechanical instabilities of homogeneous crystals. Physical Review B, 52(17), 12627-12635. doi:10.1103/physrevb.52.12627 es_ES
dc.description.references Karki, B. B., Stixrude, L., & Wentzcovitch, R. M. (2001). High-pressure elastic properties of major materials of Earth’s mantle from first principles. Reviews of Geophysics, 39(4), 507-534. doi:10.1029/2000rg000088 es_ES
dc.description.references Krasilnikov, O. M., Belov, M. P., Lugovskoy, A. V., Mosyagin, I. Y., & Vekilov, Y. K. (2014). Elastic properties, lattice dynamics and structural transitions in molybdenum at high pressures. Computational Materials Science, 81, 313-318. doi:10.1016/j.commatsci.2013.08.038 es_ES
dc.description.references Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58. doi:10.1002/zamm.19290090104 es_ES
dc.description.references Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349-354. doi:10.1088/0370-1298/65/5/307 es_ES
dc.description.references Wu, Z., Zhao, E., Xiang, H., Hao, X., Liu, X., & Meng, J. (2007). Crystal structures and elastic properties of superhardIrN2andIrN3from first principles. Physical Review B, 76(5). doi:10.1103/physrevb.76.054115 es_ES
dc.description.references Caracas, R., & Boffa Ballaran, T. (2010). Elasticity of (K,Na)AlSi3O8 hollandite from lattice dynamics calculations. Physics of the Earth and Planetary Interiors, 181(1-2), 21-26. doi:10.1016/j.pepi.2010.04.004 es_ES
dc.description.references Liu, Q.-J., Liu, Z.-T., & Feng, L.-P. (2011). First-Principles Calculations of Structural, Elastic and Electronic Properties of Tetragonal HfO2under Pressure. Communications in Theoretical Physics, 56(4), 779-784. doi:10.1088/0253-6102/56/4/31 es_ES
dc.description.references Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496 es_ES
dc.description.references Grimvall, G., Magyari-Köpe, B., Ozoliņš, V., & Persson, K. A. (2012). Lattice instabilities in metallic elements. Reviews of Modern Physics, 84(2), 945-986. doi:10.1103/revmodphys.84.945 es_ES
dc.description.references Sharma, S. M., & Sikka, S. K. (1996). Pressure induced amorphization of materials. Progress in Materials Science, 40(1), 1-77. doi:10.1016/0079-6425(95)00006-2 es_ES
dc.description.references Richet, P., & Gillet, P. (1997). Pressure-induced amorphization of minerals: a review. European Journal of Mineralogy, 9(5), 907-934. doi:10.1127/ejm/9/5/0907 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem