- -

Multilayer perceptron and regression modelling to forecast hourly nitrogen dioxide concentrations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multilayer perceptron and regression modelling to forecast hourly nitrogen dioxide concentrations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capilla, Carmen es_ES
dc.date.accessioned 2015-06-24T13:12:20Z
dc.date.available 2015-06-24T13:12:20Z
dc.date.issued 2014
dc.identifier.isbn 978-1-84564-782-7
dc.identifier.issn 1746-448x
dc.identifier.uri http://hdl.handle.net/10251/52221
dc.description.abstract This paper presents the application of feed-forward multilayer perceptron networks and multiple regression models, to forecast hourly nitrogen dioxide levels 24 hours in advance. Input data are traffic and meteorological variables, and nitrogen dioxide hourly levels. The introduction of four periodic components (sine and cosine terms for the daily and weekly cycles), and nitrogen oxide hourly levels was analyzed in order to improve the prediction power. The data were measured for three years at two monitoring stations in Valencia (Spain). The model evaluation criteria were the mean absolute error, the root mean square error and the mean absolute percentage error. The multilayer perceptron networks performed better than the regression models in nonlinear relationships like that involving nitrogen oxides, meteorological and traffic variables. Comparisons of the multilayer perceptron-based models proved that the insertion of the four additional seasonal input variables improved the ability of obtaining more accurate predictions, which emphasizes the importance of taking into account the seasonal character of nitrogen dioxide. The advantages of neural networks were that they did not require very exhaustive information about air pollutants, reaction mechanisms, meteorological parameters or traffic flow, and that they had the ability of allowing nonlinear relationships between very different predictor variables in an urban environment. es_ES
dc.language Inglés es_ES
dc.publisher WIT Press es_ES
dc.relation.ispartof Air Pollution XXII es_ES
dc.relation.ispartofseries WIT Transactions on Ecology and the Environment;183
dc.rights Reserva de todos los derechos es_ES
dc.subject Air quality es_ES
dc.subject Nitrogen dioxide concentration es_ES
dc.subject Urban atmosphere pollution es_ES
dc.subject Multilayer perceptron es_ES
dc.subject Multiple regression model es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Multilayer perceptron and regression modelling to forecast hourly nitrogen dioxide concentrations es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.2495/AIR140041
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Capilla, C. (2014). Multilayer perceptron and regression modelling to forecast hourly nitrogen dioxide concentrations. En Air Pollution XXII. WIT Press. 39-48. doi:10.2495/AIR140041 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.2495/AIR140041 es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 48 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 268430
dc.identifier.eissn 1743-3541


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem