- -

Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical Aspects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical Aspects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Camacho Páez, José es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.date.accessioned 2015-06-25T12:44:33Z
dc.date.available 2015-06-25T12:44:33Z
dc.date.issued 2014-02-15
dc.identifier.issn 0169-7439
dc.identifier.uri http://hdl.handle.net/10251/52302
dc.description.abstract This is the second paper of a series devoted to provide theoretical and practical results and new algorithms for the selection of the number of Principal Components (PCs) in Principal Component Analysis (PCA) using crossvalidation. The study is especially focused on the element-wise k-fold (ekf), which is among the most used algorithms for that purpose. In this paper, a taxonomy of PCA applications is proposed and it is argued that cross-validatory algorithms computing the prediction error in observable variables, like ekf, are only suited for a class of applications. A number of cross-validation methods, several of which are original, are compared in two applications of this class: missing data imputation and compression. The results showthat the ekf is especially suited for missing data applications while other traditional cross-validation methods, those by Wold and Eastment and Krzanowski, are not found to provide useful outcomes in any of the two applications. These results are of special value considering that the methods investigated are computed in the main commercial software packets for chemometrics. Finally, the choice of the missing data algorithm within ekf is also investigated. es_ES
dc.description.sponsorship Research in this area was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grants DPI2008-06880-C03-01, DPI2008-06880-C03-03 and TEC2011-22579 and the Juan de la Cierva program. The reviewers are gratefully acknowledged for their useful comments in both papers of the series. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Principal Component Analysis es_ES
dc.subject Number of components es_ES
dc.subject Cross-validation es_ES
dc.subject Missing data es_ES
dc.subject Compression es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical Aspects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2013.12.003
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-01/ES/MODELADO MULTIESCALA EN BIOLOGIA DE SISTEMAS. APLICACION A LA MONITORIZACION, OPTIMIZACION Y CONTROL DE BIOPROCESOS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-22579/ES/SUPERVIVENCIA DE REDES MANET ANTE INCIDENTES DE SEGURIDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Camacho Páez, J.; Ferrer Riquelme, AJ. (2014). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical Aspects. Chemometrics and Intelligent Laboratory Systems. 131:37-50. doi:10.1016/j.chemolab.2013.12.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.chemolab.2013.12.003 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 50 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 131 es_ES
dc.relation.senia 282478
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem