Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez Molins, Mario | es_ES |
dc.contributor.author | Ingolotti Hetter, Laura Paola | es_ES |
dc.contributor.author | Barber Sanchís, Federico | es_ES |
dc.contributor.author | Salido Gregorio, Miguel Angel | es_ES |
dc.contributor.author | Sierra, María R. | es_ES |
dc.contributor.author | Puente, Jorge | es_ES |
dc.date.accessioned | 2015-06-25T12:56:42Z | |
dc.date.available | 2015-06-25T12:56:42Z | |
dc.date.issued | 2014-07-01 | |
dc.identifier.issn | 2192-6352 | |
dc.identifier.uri | http://hdl.handle.net/10251/52303 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s13748-014-0056-3 | es_ES |
dc.description.abstract | [EN] Scheduling problems usually obtain the optimal solutions assuming that the environment is deterministic. However, actually the environment is dynamic and uncertain. Thus, the initial data could change and the initial schedule obtained might be unfeasible. To overcome this issue, a proactive approach is presented for scheduling problems without any previous knowledge about the incidences that can occur. In this paper, we consider the berth allocation problem and the quay crane assignment problem as a representative example of scheduling problems where a typical objective is to minimize the service time. The robustness is introduced within this problem by means of buffer times that should be maximized to absorb possible incidences or breakdowns. Therefore, this problem becomes a multi-objective optimization problem with two opposite objectives: minimizing the total service time and maximizing the robustness or buffer times. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Government under research projects TIN2010-20976-C02-01 and TIN2010-20976-C02-02 (Min. de Ciencia e Innovación, Spain), the project PIRSES-GA-2011-294931 (FP7-PEOPLE-2011-IRSES) and the predoctoral FPU fellowship (AP2010-4405). | |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Progress in Artificial Intelligence | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Scheduling | es_ES |
dc.subject | Planning | es_ES |
dc.subject | Robustness | es_ES |
dc.subject | Genetic algorithms | es_ES |
dc.subject | Metaheuristics | es_ES |
dc.subject | Multi-objective | es_ES |
dc.subject | Berthing allocation | es_ES |
dc.subject | Quay crane assignment | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A genetic algorithm for robust berth allocation and quay crane assignment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13748-014-0056-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-01/ES/TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABLES Y ROBUSTAS EN PROBLEMAS DE OPTIMIZACION Y SATISFACCION DE RESTRICCIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-02/ES/METAHEURISTICAS PARA LA ESTABILIDAD Y ROBUSTEZ EN SCHEDULING CON INCERTIDUMBRE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//AP2010-4405/ES/AP2010-4405/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Rodríguez Molins, M.; Ingolotti Hetter, LP.; Barber Sanchís, F.; Salido Gregorio, MA.; Sierra, MR.; Puente, J. (2014). A genetic algorithm for robust berth allocation and quay crane assignment. Progress in Artificial Intelligence. 2(4):177-192. https://doi.org/10.1007/s13748-014-0056-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs13748-014-0056-3 | es_ES |
dc.description.upvformatpinicio | 177 | es_ES |
dc.description.upvformatpfin | 192 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 278599 | |
dc.identifier.eissn | 2192-6360 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | |
dc.description.references | Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202, 615–627 (2010) | es_ES |
dc.description.references | Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-criteria Decis. Anal. 7, 34–47 (1998) | es_ES |
dc.description.references | Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evol. Comput. IEEE Trans. 6(2), 182–197 (2002) | es_ES |
dc.description.references | Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as mehodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011) | es_ES |
dc.description.references | Du, Y., Xu, Y., Chen, Q.: A feedback procedure for robust berth allocation with stochastic vessel delays. In: Intelligent control and automation (WCICA), 2010 8th World Congress on, pp. 2210–2215. IEEE (2010) | es_ES |
dc.description.references | Giallombardo, G., Moccia, L., Salani, M., Vacca, I.: Modeling and solving the tactical berth allocation problem. Transp. Res. Part B: Methodol. 44(2), 232–245 (2010) | es_ES |
dc.description.references | Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, London (1989) | es_ES |
dc.description.references | Gonzalez-Rodriguez, I., Vela, C., Puente, J.: A memetic approach to fuzzy job shop based on expectation model. In: Proceedings of IEEE International Conference on fuzzy systems, FUZZ-IEEE2007, pp. 692–697. IEEE (2007) | es_ES |
dc.description.references | González-Rodríguez, I., Vela, C., Puente, J.: A genetic solution based on lexicographical goal programming for a multiobjective job shop with uncertainty. J. Intell. Manuf. 21(1), 65–73 (2010) | es_ES |
dc.description.references | Han, X.l., Lu, Z.q., Xi, L.f.: A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur. J. Oper. Res. 207(3), 1327–1340 (2010) | es_ES |
dc.description.references | Hendriks, M., Laumanns, M., Lefeber, E., Udding, J.T.: Robust cyclic berth planning of container vessels. OR Spectr. 32(3), 501–517 (2010) | es_ES |
dc.description.references | Imai, A., Chen, H., Nishimura, E., Papadimitriou, S.: The simultaneous berth and quay crane allocation problem. Transp. Res. Part E: Logist. Transp. Rev. 44(5), 900–920 (2008) | es_ES |
dc.description.references | Kim, K., Moon, K.: Berth scheduling by simulated annealing. Transp. Res. Part B: Methodol. 37(6), 541–560 (2003) | es_ES |
dc.description.references | Kim, M., Hiroyasu, T., Miki, M., Watanabe, S.: Spea2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2. In: Parallel problem solving from nature-PPSN VIII, pp. 742–751. Springer, New York (2004) | es_ES |
dc.description.references | Liang, C., Guo, J., Yang, Y.: Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning. J. Intell. Manuf. 22, 471–479 (2011) | es_ES |
dc.description.references | Lim, A.: The berth planning problem. Oper. Res. Lett. 22(2–3), 105–110 (1998) | es_ES |
dc.description.references | Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011) | es_ES |
dc.description.references | Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, third, revised and extended. Springer, New York (1996) | es_ES |
dc.description.references | Park, Y., Kim, K.: A scheduling method for berth and quay cranes. OR Spectr. 25(1), 1–23 (2003) | es_ES |
dc.description.references | Salido, M.A., Rodriguez-Molins, M., Barber, F.: Integrated intelligent techniques for remarshaling and berthing in maritime terminals. Adv. Eng. Inf. 25(3), 435–451 (2011) | es_ES |
dc.description.references | Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, London (2004) | es_ES |
dc.description.references | Stahlbock, R., Voß, S.: Operations research at container terminals: a literature update. OR Spectr. 30(1), 1–52 (2008) | es_ES |
dc.description.references | Xu, Y., Chen, Q., Quan, X.: Robust berth scheduling with uncertain vessel delay and handling time. Ann. Oper. Res. 192(1), 123–140 (2012) | es_ES |
dc.description.references | Zhang, C., Zheng, L., Zhang, Z., Shi, L., Armstrong, A.: The allocation of berths and quay cranes by using a sub-gradient optimization technique. Computers Ind. Eng. 58(1), 40–50 (2010) | es_ES |
dc.description.references | Zhen, L., Chang, D.F.: A bi-objective model for robust berth allocation scheduling. Computers Ind. Eng. 63(1), 262–273 (2012) | es_ES |