- -

Groups whose primary subgroups are normal sensitive

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Groups whose primary subgroups are normal sensitive

Show full item record

Ballester-Bolinches, A.; Kurdachenko, LA.; Otal, J.; Pedraza Aguilera, T. (2014). Groups whose primary subgroups are normal sensitive. Monatshefte fur Mathematik. 175(2):175-185. doi:10.1007/s00605-013-0566-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52531

Files in this item

Item Metadata

Title: Groups whose primary subgroups are normal sensitive
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
A subgroup of a group is said to be normal sensitive in if for every normal subgroup of . In this paper we study locally finite groups whose -subgroups are normal sensitive. We show the connection between these groups and ...[+]
Subjects: Locally finite group , Normal sensitivity , Primary subgroup , PST-group , T-group
Copyrigths: Cerrado
Source:
Monatshefte fur Mathematik. (issn: 0026-9255 )
DOI: 10.1007/s00605-013-0566-2
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/article/10.1007/s00605-013-0566-2
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s00605-013-0566-2
Thanks:
This research was supported by Proyecto MTM2010-19938-C03-01 (Ballester-Bolinches, Pedraza) and Proyecto MTM2010-19938-C03-03 (Kurdachenko, Otal) from MINECO (Spain). The third author was also supported by Gobierno of ...[+]
Type: Artículo

References

Baer, R.: Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Akad. 2, 12–17 (1933)

Ballester-Bolinches, A., Esteban-Romero, R.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251, 727–738 (2002)

Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. De Gruyter expositions in mathematics. Walter de Gruyter, Berlin (2010) [+]
Baer, R.: Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Akad. 2, 12–17 (1933)

Ballester-Bolinches, A., Esteban-Romero, R.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251, 727–738 (2002)

Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. De Gruyter expositions in mathematics. Walter de Gruyter, Berlin (2010)

Ballester-Bolinches, A., Kurdachenko, L.A., Otal, J., Pedraza, T.: Infinite groups with many permutable subgroups. Rev. Mat. Iberoamericana 24, 745–764 (2008)

Bauman, S.: The intersection map of subgroups. Arch. Math. (Basel) 25, 337–340 (1974)

Beidleman, J.C., Ragland, M.F.: The intersection map of subgroups and certain classes of finite groups. Ric. Mat. 56, 217–227 (2007)

Berkovich, Y.: Subgroups with the character restriction property and related topics. Houston J. Math. 24, 631–638 (1998)

Biró, B., Kiss, E.W., Pálfy, P.P.: On the congruence extension property. Colloq. Math. Soc. Janos Bolyai 29, 129–151 (1982)

Bruno, B., Emaldi, M.: On groups all of whose subgroups are normal-sensitive. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 64, 265–269 (1978)

Kurdachenko, L.A., Otal, J., Subbotin, IYa.: Artinian modules over group rings. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007)

Robinson, D.J.S.: Groups in which normality is a transitive relation. Proc. Camb. Phil. Soc. 60, 21–38 (1964)

Robinson, D.J.S.: Sylow permutability in locally finite groups. Ric. Mat. 59, 313–318 (2010)

Schmidt, R.: Subgroups lattices of groups. Walter de Gruyter, Berlin (1994)

[-]

This item appears in the following Collection(s)

Show full item record