Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester-Bolinches, Adolfo | es_ES |
dc.contributor.author | Kurdachenko, Leonid A. | es_ES |
dc.contributor.author | Otal, Javier | es_ES |
dc.contributor.author | Pedraza Aguilera, Tatiana | es_ES |
dc.date.accessioned | 2015-07-01T07:39:12Z | |
dc.date.available | 2015-07-01T07:39:12Z | |
dc.date.issued | 2014-10 | |
dc.identifier.issn | 0026-9255 | |
dc.identifier.uri | http://hdl.handle.net/10251/52531 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s00605-013-0566-2 | es_ES |
dc.description.abstract | A subgroup of a group is said to be normal sensitive in if for every normal subgroup of . In this paper we study locally finite groups whose -subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive. | es_ES |
dc.description.sponsorship | This research was supported by Proyecto MTM2010-19938-C03-01 (Ballester-Bolinches, Pedraza) and Proyecto MTM2010-19938-C03-03 (Kurdachenko, Otal) from MINECO (Spain). The third author was also supported by Gobierno of Aragon (Spain) and FEDER funds. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Monatshefte fur Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Locally finite group | es_ES |
dc.subject | Normal sensitivity | es_ES |
dc.subject | Primary subgroup | es_ES |
dc.subject | PST-group | es_ES |
dc.subject | T-group | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Groups whose primary subgroups are normal sensitive | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00605-013-0566-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-03/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES II/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Ballester-Bolinches, A.; Kurdachenko, LA.; Otal, J.; Pedraza Aguilera, T. (2014). Groups whose primary subgroups are normal sensitive. Monatshefte fur Mathematik. 175(2):175-185. https://doi.org/10.1007/s00605-013-0566-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s00605-013-0566-2 | es_ES |
dc.description.upvformatpinicio | 175 | es_ES |
dc.description.upvformatpfin | 185 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 271888 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Gobierno de Aragón | es_ES |
dc.description.references | Baer, R.: Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Akad. 2, 12–17 (1933) | es_ES |
dc.description.references | Ballester-Bolinches, A., Esteban-Romero, R.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251, 727–738 (2002) | es_ES |
dc.description.references | Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. De Gruyter expositions in mathematics. Walter de Gruyter, Berlin (2010) | es_ES |
dc.description.references | Ballester-Bolinches, A., Kurdachenko, L.A., Otal, J., Pedraza, T.: Infinite groups with many permutable subgroups. Rev. Mat. Iberoamericana 24, 745–764 (2008) | es_ES |
dc.description.references | Bauman, S.: The intersection map of subgroups. Arch. Math. (Basel) 25, 337–340 (1974) | es_ES |
dc.description.references | Beidleman, J.C., Ragland, M.F.: The intersection map of subgroups and certain classes of finite groups. Ric. Mat. 56, 217–227 (2007) | es_ES |
dc.description.references | Berkovich, Y.: Subgroups with the character restriction property and related topics. Houston J. Math. 24, 631–638 (1998) | es_ES |
dc.description.references | Biró, B., Kiss, E.W., Pálfy, P.P.: On the congruence extension property. Colloq. Math. Soc. Janos Bolyai 29, 129–151 (1982) | es_ES |
dc.description.references | Bruno, B., Emaldi, M.: On groups all of whose subgroups are normal-sensitive. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 64, 265–269 (1978) | es_ES |
dc.description.references | Kurdachenko, L.A., Otal, J., Subbotin, IYa.: Artinian modules over group rings. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007) | es_ES |
dc.description.references | Robinson, D.J.S.: Groups in which normality is a transitive relation. Proc. Camb. Phil. Soc. 60, 21–38 (1964) | es_ES |
dc.description.references | Robinson, D.J.S.: Sylow permutability in locally finite groups. Ric. Mat. 59, 313–318 (2010) | es_ES |
dc.description.references | Schmidt, R.: Subgroups lattices of groups. Walter de Gruyter, Berlin (1994) | es_ES |