- -

Groups whose primary subgroups are normal sensitive

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Groups whose primary subgroups are normal sensitive

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester-Bolinches, Adolfo es_ES
dc.contributor.author Kurdachenko, Leonid A. es_ES
dc.contributor.author Otal, Javier es_ES
dc.contributor.author Pedraza Aguilera, Tatiana es_ES
dc.date.accessioned 2015-07-01T07:39:12Z
dc.date.available 2015-07-01T07:39:12Z
dc.date.issued 2014-10
dc.identifier.issn 0026-9255
dc.identifier.uri http://hdl.handle.net/10251/52531
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s00605-013-0566-2 es_ES
dc.description.abstract A subgroup of a group is said to be normal sensitive in if for every normal subgroup of . In this paper we study locally finite groups whose -subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive. es_ES
dc.description.sponsorship This research was supported by Proyecto MTM2010-19938-C03-01 (Ballester-Bolinches, Pedraza) and Proyecto MTM2010-19938-C03-03 (Kurdachenko, Otal) from MINECO (Spain). The third author was also supported by Gobierno of Aragon (Spain) and FEDER funds. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Monatshefte fur Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Locally finite group es_ES
dc.subject Normal sensitivity es_ES
dc.subject Primary subgroup es_ES
dc.subject PST-group es_ES
dc.subject T-group es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Groups whose primary subgroups are normal sensitive es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00605-013-0566-2
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-03/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES II/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Ballester-Bolinches, A.; Kurdachenko, LA.; Otal, J.; Pedraza Aguilera, T. (2014). Groups whose primary subgroups are normal sensitive. Monatshefte fur Mathematik. 175(2):175-185. https://doi.org/10.1007/s00605-013-0566-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007/s00605-013-0566-2 es_ES
dc.description.upvformatpinicio 175 es_ES
dc.description.upvformatpfin 185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 271888
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.description.references Baer, R.: Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Akad. 2, 12–17 (1933) es_ES
dc.description.references Ballester-Bolinches, A., Esteban-Romero, R.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251, 727–738 (2002) es_ES
dc.description.references Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. De Gruyter expositions in mathematics. Walter de Gruyter, Berlin (2010) es_ES
dc.description.references Ballester-Bolinches, A., Kurdachenko, L.A., Otal, J., Pedraza, T.: Infinite groups with many permutable subgroups. Rev. Mat. Iberoamericana 24, 745–764 (2008) es_ES
dc.description.references Bauman, S.: The intersection map of subgroups. Arch. Math. (Basel) 25, 337–340 (1974) es_ES
dc.description.references Beidleman, J.C., Ragland, M.F.: The intersection map of subgroups and certain classes of finite groups. Ric. Mat. 56, 217–227 (2007) es_ES
dc.description.references Berkovich, Y.: Subgroups with the character restriction property and related topics. Houston J. Math. 24, 631–638 (1998) es_ES
dc.description.references Biró, B., Kiss, E.W., Pálfy, P.P.: On the congruence extension property. Colloq. Math. Soc. Janos Bolyai 29, 129–151 (1982) es_ES
dc.description.references Bruno, B., Emaldi, M.: On groups all of whose subgroups are normal-sensitive. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 64, 265–269 (1978) es_ES
dc.description.references Kurdachenko, L.A., Otal, J., Subbotin, IYa.: Artinian modules over group rings. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007) es_ES
dc.description.references Robinson, D.J.S.: Groups in which normality is a transitive relation. Proc. Camb. Phil. Soc. 60, 21–38 (1964) es_ES
dc.description.references Robinson, D.J.S.: Sylow permutability in locally finite groups. Ric. Mat. 59, 313–318 (2010) es_ES
dc.description.references Schmidt, R.: Subgroups lattices of groups. Walter de Gruyter, Berlin (1994) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem