- -

Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peinado Pinilla, Jesús es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.contributor.author Arias, E. es_ES
dc.contributor.author Hernández García, Vicente es_ES
dc.date.accessioned 2015-07-01T07:40:47Z
dc.date.available 2015-07-01T07:40:47Z
dc.date.issued 2010-12
dc.identifier.issn 0898-1221
dc.identifier.uri http://hdl.handle.net/10251/52532
dc.description.abstract Differential Riccati equations play a fundamental role in control theory, for example, optimal control, filtering and estimation, decoupling and order reduction, etc. In this paper several algorithms for solving differential Riccati equations based on Adams–Bashforth and Adams–Moulton methods are described. The Adams–Bashforth methods allow us explicitly to compute the approximate solution at an instant time from the solutions in previous instants. In each step of Adams–Moulton methods an algebraic matrix Riccati equation (AMRE) is obtained, which is solved by means of Newton’s method. Nine algorithms are considered for solving the AMRE: a Sylvester algorithm, an iterative generalized minimum residual (GMRES) algorithm, a fixed-point algorithm and six combined algorithms. Since the above algorithms have a similar structure, it is possible to design a general and efficient algorithm that uses one algorithm or another depending on the considered differential matrix Riccati equation. MATLAB versions of the above algorithms are developed, comparing precision and computational costs, after numerous tests on five case studies. © 2010 Elsevier Ltd. All rights reserved. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Mathematics with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Differential Matrix Riccati Equation (DMRE) es_ES
dc.subject Algebraic Matrix Riccati Equation (AMRE) es_ES
dc.subject Algebraic Matrix Sylvester Equation (AMSE) es_ES
dc.subject Adams-Bashforth method es_ES
dc.subject Adams-Moulton methods es_ES
dc.subject GMRES methods es_ES
dc.subject Fixed-point method es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.camwa.2010.10.002
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Peinado Pinilla, J.; Ibáñez González, JJ.; Arias, E.; Hernández García, V. (2010). Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations. Computers and Mathematics with Applications. 60(11):3032-3045. doi:10.1016/j.camwa.2010.10.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.camwa.2010.10.002 es_ES
dc.description.upvformatpinicio 3032 es_ES
dc.description.upvformatpfin 3045 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 39340


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem