- -

Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material

Show full item record

Aprile, C.; Teruel Biosca, L.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material. Canadian Journal of Chemistry. 89(2):158-162. doi:10.1139/V10-122

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52549

Files in this item

Item Metadata

Title: Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material
Author: Aprile, Carmela Teruel Biosca, Laura Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
Using cetyltrimethylammonium bromide as the structure-directing agent, titania nanoparticles (3–5 nm) were organized into a mesoporous material (8.6 nm average pore size and 99 m2/g). The textural and spatial structuring ...[+]
Subjects: Dye-sensitized solar cells , Semiconductors , Pluronic as structure-directing agent , Spatial ordering of titania nanoparticles , N719 dye
Copyrigths: Cerrado
Source:
Canadian Journal of Chemistry. (issn: 0008-4042 ) (eissn: 1480-3291 )
DOI: 10.1139/V10-122
Publisher:
NRC Research Press (Canadian Science Publishing)
Publisher version: http://dx.doi.org/10.1139/V10-122
Thanks:
Financial support by the Spanish DGI (CTQ2009-11586) is gratefully acknowledged. C. A. thanks the Spanish Ministry of Education for a Juan de la Cierva research associate contract.
Type: Artículo

References

Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/s1389-5567(03)00026-1

Grätzel, M. (1999). Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid & Interface Science, 4(4), 314-321. doi:10.1016/s1359-0294(99)90013-4

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 [+]
Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/s1389-5567(03)00026-1

Grätzel, M. (1999). Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid & Interface Science, 4(4), 314-321. doi:10.1016/s1359-0294(99)90013-4

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Soler-Illia, G. J. de A. A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews, 102(11), 4093-4138. doi:10.1021/cr0200062

Ryoo, R., & Jun, S. (1997). Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. The Journal of Physical Chemistry B, 101(3), 317-320. doi:10.1021/jp962500d

Yang, Q., Li, Y., Zhang, L., Yang, J., Liu, J., & Li, C. (2004). Hydrothermal Stability and Catalytic Activity of Aluminum-Containing Mesoporous Ethane−Silicas. The Journal of Physical Chemistry B, 108(23), 7934-7937. doi:10.1021/jp040124o

Kondo, J. N., & Domen, K. (2008). Crystallization of Mesoporous Metal Oxides†. Chemistry of Materials, 20(3), 835-847. doi:10.1021/cm702176m

Llusar, M., & Sanchez, C. (2008). Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators†. Chemistry of Materials, 20(3), 782-820. doi:10.1021/cm702141e

Tiemann, M. (2008). Repeated Templating†. Chemistry of Materials, 20(3), 961-971. doi:10.1021/cm702050s

Kartini, I., Menzies, D., Blake, D., da Costa, J. C. D., Meredith, P., Riches, J. D., & Lu, G. Q. (2004). Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs). Journal of Materials Chemistry, 14(19), 2917. doi:10.1039/b406286h

Choi, S. Y., Lee, B., Carew, D. B., Mamak, M., Peiris, F. C., Speakman, S., … Ozin, G. A. (2006). 3D Hexagonal (R-3m) Mesostructured Nanocrystalline Titania Thin Films: Synthesis and Characterization. Advanced Functional Materials, 16(13), 1731-1738. doi:10.1002/adfm.200500507

Malfatti, L., Falcaro, P., Amenitsch, H., Caramori, S., Argazzi, R., Bignozzi, C. A., … Innocenzi, P. (2006). Mesostructured self-assembled titania films for photovoltaic applications. Microporous and Mesoporous Materials, 88(1-3), 304-311. doi:10.1016/j.micromeso.2005.09.027

Ngamsinlapasathian, S., Pavasupree, S., Suzuki, Y., & Yoshikawa, S. (2006). Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method. Solar Energy Materials and Solar Cells, 90(18-19), 3187-3192. doi:10.1016/j.solmat.2006.06.021

Zukalová, M., Zukal, A., Kavan, L., Nazeeruddin, M. K., Liska, P., & Grätzel, M. (2005). Organized Mesoporous TiO2Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells. Nano Letters, 5(9), 1789-1792. doi:10.1021/nl051401l

Wang, H., Liu, Y., & Pinnavaia, T. J. (2006). Highly Acidic Mesostructured Aluminosilicates Assembled from Surfactant-Mediated Zeolite Hydrolysis Products. The Journal of Physical Chemistry B, 110(10), 4524-4526. doi:10.1021/jp056688p

Lee, J., Christopher Orilall, M., Warren, S. C., Kamperman, M., DiSalvo, F. J., & Wiesner, U. (2008). Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials, 7(3), 222-228. doi:10.1038/nmat2111

Alvaro, M., Aprile, C., Benitez, M., Carbonell, E., & García, H. (2006). Photocatalytic Activity of Structured Mesoporous TiO2Materials. The Journal of Physical Chemistry B, 110(13), 6661-6665. doi:10.1021/jp0573240

Alvaro, M., Aprile, C., Garcia, H., & Gómez-García, C. J. (2006). Synthesis of a Hydrothermally Stable, Periodic Mesoporous Material Containing Magnetite Nanoparticles, and the Preparation of Oriented Films. Advanced Functional Materials, 16(12), 1543-1548. doi:10.1002/adfm.200500766

Aprile, C., Corma, A., & Garcia, H. (2008). Enhancement of the photocatalytic activity of TiO2through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 10(6), 769-783. doi:10.1039/b712168g

Kim, Y. J., Lee, Y. H., Lee, M. H., Kim, H. J., Pan, J. H., Lim, G. I., … Lee, W. I. (2008). Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2Thin Film. Langmuir, 24(22), 13225-13230. doi:10.1021/la802340g

Liu, Z., Li, Y., Zhao, Z., Cui, Y., Hara, K., & Miyauchi, M. (2010). Block copolymer templated nanoporous TiO2for quantum-dot-sensitized solar cells. J. Mater. Chem., 20(3), 492-497. doi:10.1039/b917634a

Nedelcu, M., Lee, J., Crossland, E. J. W., Warren, S. C., Orilall, M. C., Guldin, S., … Snaith, H. J. (2009). Block copolymer directed synthesis of mesoporous TiO2for dye-sensitized solar cells. Soft Matter, 5(1), 134-139. doi:10.1039/b815166k

Yoon, J.-H., Jang, S.-R., Vittal, R., Lee, J., & Kim, K.-J. (2006). TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 184-188. doi:10.1016/j.jphotochem.2005.10.013

Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658

Yue, W., Xu, X., Irvine, J. T. S., Attidekou, P. S., Liu, C., He, H., … Zhou, W. (2009). Mesoporous Monocrystalline TiO2and Its Solid-State Electrochemical Properties. Chemistry of Materials, 21(12), 2540-2546. doi:10.1021/cm900197p

Nazeeruddin, M. K., Bessho, T., Cevey, L., Ito, S., Klein, C., De Angelis, F., … Graetzel, M. (2007). A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 185(2-3), 331-337. doi:10.1016/j.jphotochem.2006.06.028

Nazeeruddin, M. K., Splivallo, R., Liska, P., Comte, P., & Grätzel, M. (2003). A swift dye uptake procedure for dye sensitized solar cells. Chem. Commun., (12), 1456-1457. doi:10.1039/b302566g

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023

Lee, W. J., Ramasamy, E., & Lee, D. Y. (2009). Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 93(8), 1448-1451. doi:10.1016/j.solmat.2009.03.002

[-]

This item appears in the following Collection(s)

Show full item record