- -

Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material

Show simple item record

Files in this item

dc.contributor.author Aprile, Carmela es_ES
dc.contributor.author Teruel Biosca, Laura es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-07-01T09:33:18Z
dc.date.available 2015-07-01T09:33:18Z
dc.date.issued 2011-02
dc.identifier.issn 0008-4042
dc.identifier.uri http://hdl.handle.net/10251/52549
dc.description.abstract Using cetyltrimethylammonium bromide as the structure-directing agent, titania nanoparticles (3–5 nm) were organized into a mesoporous material (8.6 nm average pore size and 99 m2/g). The textural and spatial structuring of the mesoporous material were studied by hydrothermal gas adsorption, X-ray diffraction, and transmission electron microscopy. Dye-sensitized solar cells using mesoporous material exhibit a one order of magnitude increase in the overall efficiency with respect to analogous cells prepared using the same nanoparticles without periodic mesoporous material. This photovoltaic enhancement is due to increased adsorption of the dye (ruthenium polypyridyl N719) to the mesoporous material arising from the larger area of this mesoporous solid with respect to the same unstructured nanoparticles. es_ES
dc.description.sponsorship Financial support by the Spanish DGI (CTQ2009-11586) is gratefully acknowledged. C. A. thanks the Spanish Ministry of Education for a Juan de la Cierva research associate contract. en_EN
dc.language Inglés es_ES
dc.publisher NRC Research Press (Canadian Science Publishing) es_ES
dc.relation Spanish DGI CTQ2009-11586 es_ES
dc.relation Spanish Ministry of Education for a Juan de la Cierva es_ES
dc.relation.ispartof Canadian Journal of Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dye-sensitized solar cells es_ES
dc.subject Semiconductors es_ES
dc.subject Pluronic as structure-directing agent es_ES
dc.subject Spatial ordering of titania nanoparticles es_ES
dc.subject N719 dye es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1139/V10-122
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Aprile, C.; Teruel Biosca, L.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Dye-sensitized solar cells made of titania nanoparticles structured into a mesoporous material. Canadian Journal of Chemistry. 89(2):158-162. doi:10.1139/V10-122 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1139/V10-122 es_ES
dc.description.upvformatpinicio 158 es_ES
dc.description.upvformatpfin 162 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 215859
dc.identifier.eissn 1480-3291
dc.relation.references Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/s1389-5567(03)00026-1 es_ES
dc.relation.references Grätzel, M. (1999). Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid & Interface Science, 4(4), 314-321. doi:10.1016/s1359-0294(99)90013-4 es_ES
dc.relation.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.relation.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.relation.references Soler-Illia, G. J. de A. A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews, 102(11), 4093-4138. doi:10.1021/cr0200062 es_ES
dc.relation.references Ryoo, R., & Jun, S. (1997). Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. The Journal of Physical Chemistry B, 101(3), 317-320. doi:10.1021/jp962500d es_ES
dc.relation.references Yang, Q., Li, Y., Zhang, L., Yang, J., Liu, J., & Li, C. (2004). Hydrothermal Stability and Catalytic Activity of Aluminum-Containing Mesoporous Ethane−Silicas. The Journal of Physical Chemistry B, 108(23), 7934-7937. doi:10.1021/jp040124o es_ES
dc.relation.references Kondo, J. N., & Domen, K. (2008). Crystallization of Mesoporous Metal Oxides†. Chemistry of Materials, 20(3), 835-847. doi:10.1021/cm702176m es_ES
dc.relation.references Llusar, M., & Sanchez, C. (2008). Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators†. Chemistry of Materials, 20(3), 782-820. doi:10.1021/cm702141e es_ES
dc.relation.references Tiemann, M. (2008). Repeated Templating†. Chemistry of Materials, 20(3), 961-971. doi:10.1021/cm702050s es_ES
dc.relation.references Kartini, I., Menzies, D., Blake, D., da Costa, J. C. D., Meredith, P., Riches, J. D., & Lu, G. Q. (2004). Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs). Journal of Materials Chemistry, 14(19), 2917. doi:10.1039/b406286h es_ES
dc.relation.references Choi, S. Y., Lee, B., Carew, D. B., Mamak, M., Peiris, F. C., Speakman, S., … Ozin, G. A. (2006). 3D Hexagonal (R-3m) Mesostructured Nanocrystalline Titania Thin Films: Synthesis and Characterization. Advanced Functional Materials, 16(13), 1731-1738. doi:10.1002/adfm.200500507 es_ES
dc.relation.references Malfatti, L., Falcaro, P., Amenitsch, H., Caramori, S., Argazzi, R., Bignozzi, C. A., … Innocenzi, P. (2006). Mesostructured self-assembled titania films for photovoltaic applications. Microporous and Mesoporous Materials, 88(1-3), 304-311. doi:10.1016/j.micromeso.2005.09.027 es_ES
dc.relation.references Ngamsinlapasathian, S., Pavasupree, S., Suzuki, Y., & Yoshikawa, S. (2006). Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method. Solar Energy Materials and Solar Cells, 90(18-19), 3187-3192. doi:10.1016/j.solmat.2006.06.021 es_ES
dc.relation.references Zukalová, M., Zukal, A., Kavan, L., Nazeeruddin, M. K., Liska, P., & Grätzel, M. (2005). Organized Mesoporous TiO2Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells. Nano Letters, 5(9), 1789-1792. doi:10.1021/nl051401l es_ES
dc.relation.references Wang, H., Liu, Y., & Pinnavaia, T. J. (2006). Highly Acidic Mesostructured Aluminosilicates Assembled from Surfactant-Mediated Zeolite Hydrolysis Products. The Journal of Physical Chemistry B, 110(10), 4524-4526. doi:10.1021/jp056688p es_ES
dc.relation.references Lee, J., Christopher Orilall, M., Warren, S. C., Kamperman, M., DiSalvo, F. J., & Wiesner, U. (2008). Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials, 7(3), 222-228. doi:10.1038/nmat2111 es_ES
dc.relation.references Alvaro, M., Aprile, C., Benitez, M., Carbonell, E., & García, H. (2006). Photocatalytic Activity of Structured Mesoporous TiO2Materials. The Journal of Physical Chemistry B, 110(13), 6661-6665. doi:10.1021/jp0573240 es_ES
dc.relation.references Alvaro, M., Aprile, C., Garcia, H., & Gómez-García, C. J. (2006). Synthesis of a Hydrothermally Stable, Periodic Mesoporous Material Containing Magnetite Nanoparticles, and the Preparation of Oriented Films. Advanced Functional Materials, 16(12), 1543-1548. doi:10.1002/adfm.200500766 es_ES
dc.relation.references Aprile, C., Corma, A., & Garcia, H. (2008). Enhancement of the photocatalytic activity of TiO2through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 10(6), 769-783. doi:10.1039/b712168g es_ES
dc.relation.references Kim, Y. J., Lee, Y. H., Lee, M. H., Kim, H. J., Pan, J. H., Lim, G. I., … Lee, W. I. (2008). Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2Thin Film. Langmuir, 24(22), 13225-13230. doi:10.1021/la802340g es_ES
dc.relation.references Liu, Z., Li, Y., Zhao, Z., Cui, Y., Hara, K., & Miyauchi, M. (2010). Block copolymer templated nanoporous TiO2for quantum-dot-sensitized solar cells. J. Mater. Chem., 20(3), 492-497. doi:10.1039/b917634a es_ES
dc.relation.references Nedelcu, M., Lee, J., Crossland, E. J. W., Warren, S. C., Orilall, M. C., Guldin, S., … Snaith, H. J. (2009). Block copolymer directed synthesis of mesoporous TiO2for dye-sensitized solar cells. Soft Matter, 5(1), 134-139. doi:10.1039/b815166k es_ES
dc.relation.references Yoon, J.-H., Jang, S.-R., Vittal, R., Lee, J., & Kim, K.-J. (2006). TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 184-188. doi:10.1016/j.jphotochem.2005.10.013 es_ES
dc.relation.references Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658 es_ES
dc.relation.references Yue, W., Xu, X., Irvine, J. T. S., Attidekou, P. S., Liu, C., He, H., … Zhou, W. (2009). Mesoporous Monocrystalline TiO2and Its Solid-State Electrochemical Properties. Chemistry of Materials, 21(12), 2540-2546. doi:10.1021/cm900197p es_ES
dc.relation.references Nazeeruddin, M. K., Bessho, T., Cevey, L., Ito, S., Klein, C., De Angelis, F., … Graetzel, M. (2007). A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 185(2-3), 331-337. doi:10.1016/j.jphotochem.2006.06.028 es_ES
dc.relation.references Nazeeruddin, M. K., Splivallo, R., Liska, P., Comte, P., & Grätzel, M. (2003). A swift dye uptake procedure for dye sensitized solar cells. Chem. Commun., (12), 1456-1457. doi:10.1039/b302566g es_ES
dc.relation.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.relation.references Lee, W. J., Ramasamy, E., & Lee, D. Y. (2009). Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 93(8), 1448-1451. doi:10.1016/j.solmat.2009.03.002 es_ES


This item appears in the following Collection(s)

Show simple item record