- -

Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas

Mostrar el registro completo del ítem

Rodríguez Fortuño, FJ.; Puerto Garcia, D.; Griol Barres, A.; Bellieres, LC.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas. Laser and Photonics Reviews. 8(3):27-31. https://doi.org/10.1002/lpor.201300184

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52557

Ficheros en el ítem

Metadatos del ítem

Título: Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas
Autor: Rodríguez Fortuño, Francisco José Puerto Garcia, Daniel Griol Barres, Amadeu Bellieres, Laurent Christophe Martí Sendra, Javier Martínez Abietar, Alejandro José
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Fecha difusión:
Resumen:
Optical nanoantennas efficiently convert confined optical energy into free-space radiation. The polarization of the emitted radiation depends mainly on nanoantenna shape, so it becomes extremely difficult to manipulate it ...[+]
Palabras clave: Nanoantennas , Polarization , Silicon photonics , Poincaré sphere
Derechos de uso: Cerrado
Fuente:
Laser and Photonics Reviews. (issn: 1863-8880 )
DOI: 10.1002/lpor.201300184
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/lpor.201300184
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/
Agradecimientos:
This work has received financial support from Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02). D. Puerto acknowledges support from grant Juan de la Cierva (JCI-2010-07479).
Tipo: Artículo

References

Tinbergen, J. (1996). Astronomical Polarimetry. doi:10.1017/cbo9780511525100

Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM. Journal of Lightwave Technology, 28(4), 547-556. doi:10.1109/jlt.2009.2031922

Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., … Mataloni, P. (2011). Integrated photonic quantum gates for polarization qubits. Nature Communications, 2(1). doi:10.1038/ncomms1570 [+]
Tinbergen, J. (1996). Astronomical Polarimetry. doi:10.1017/cbo9780511525100

Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM. Journal of Lightwave Technology, 28(4), 547-556. doi:10.1109/jlt.2009.2031922

Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., … Mataloni, P. (2011). Integrated photonic quantum gates for polarization qubits. Nature Communications, 2(1). doi:10.1038/ncomms1570

Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., & Zeilinger, A. (2004). Quantum teleportation across the Danube. Nature, 430(7002), 849-849. doi:10.1038/430849a

Kwiat, P. G., Barraza-Lopez, S., Stefanov, A., & Gisin, N. (2001). Experimental entanglement distillation and ‘hidden’ non-locality. Nature, 409(6823), 1014-1017. doi:10.1038/35059017

Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81

Korech, O., Steinitz, U., Gordon, R. J., Averbukh, I. S., & Prior, Y. (2013). Observing molecular spinning via the rotational Doppler effect. Nature Photonics, 7(9), 711-714. doi:10.1038/nphoton.2013.189

Kimel, A. V., Kirilyuk, A., Usachev, P. A., Pisarev, R. V., Balbashov, A. M., & Rasing, T. (2005). Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435(7042), 655-657. doi:10.1038/nature03564

Stanciu, C. D., Hansteen, F., Kimel, A. V., Kirilyuk, A., Tsukamoto, A., Itoh, A., & Rasing, T. (2007). All-Optical Magnetic Recording with Circularly Polarized Light. Physical Review Letters, 99(4). doi:10.1103/physrevlett.99.047601

Muhlschlegel, P. (2005). Resonant Optical Antennas. Science, 308(5728), 1607-1609. doi:10.1126/science.1111886

Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599

Bharadwaj, P., Deutsch, B., & Novotny, L. (2009). Optical Antennas. Advances in Optics and Photonics, 1(3), 438. doi:10.1364/aop.1.000438

Greffet, J.-J. (2005). APPLIED PHYSICS: Nanoantennas for Light Emission. Science, 308(5728), 1561-1563. doi:10.1126/science.1113355

Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727

Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237

Knight, M. W., Sobhani, H., Nordlander, P., & Halas, N. J. (2011). Photodetection with Active Optical Antennas. Science, 332(6030), 702-704. doi:10.1126/science.1203056

Lin, J., Mueller, J. P. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., & Capasso, F. (2013). Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340(6130), 331-334. doi:10.1126/science.1233746

Rodriguez-Fortuno, F. J., Marino, G., Ginzburg, P., O’Connor, D., Martinez, A., Wurtz, G. A., & Zayats, A. V. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 340(6130), 328-330. doi:10.1126/science.1233739

Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., & Lee, B. (2012). Role of Magnetic Induction Currents in Nanoslit Excitation of Surface Plasmon Polaritons. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213907

Huang, L., Chen, X., Bai, B., Tan, Q., Jin, G., Zentgraf, T., & Zhang, S. (2013). Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2(3), e70-e70. doi:10.1038/lsa.2013.26

J. P. B. Mueller F. Capasso 2013

Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., … Zhang, X. (2011). A graphene-based broadband optical modulator. Nature, 474(7349), 64-67. doi:10.1038/nature10067

Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., … Martí, J. (2011). High speed silicon electro-optical modulators enhanced via slow light propagation. Optics Express, 19(21), 20876. doi:10.1364/oe.19.020876

Chen, E., & Chou, S. Y. (1997). A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors. IEEE Photonics Technology Letters, 9(9), 1259-1261. doi:10.1109/68.618497

Afshinmanesh, F., White, J. S., Cai, W., & Brongersma, M. L. (2012). Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics, 1(2). doi:10.1515/nanoph-2012-0004

Legré, M., Wegmüller, M., & Gisin, N. (2003). Quantum Measurement of the Degree of Polarization of a Light Beam. Physical Review Letters, 91(16). doi:10.1103/physrevlett.91.167902

Huttner, B., Muller, A., Gautier, J. D., Zbinden, H., & Gisin, N. (1996). Unambiguous quantum measurement of nonorthogonal states. Physical Review A, 54(5), 3783-3789. doi:10.1103/physreva.54.3783

Cai, X., Wang, J., Strain, M. J., Johnson-Morris, B., Zhu, J., Sorel, M., … Yu, S. (2012). Integrated Compact Optical Vortex Beam Emitters. Science, 338(6105), 363-366. doi:10.1126/science.1226528

Gorodetski, Y., Drezet, A., Genet, C., & Ebbesen, T. W. (2013). Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203906

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem