- -

Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez Fortuño, Francisco José es_ES
dc.contributor.author Puerto Garcia, Daniel es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Bellieres, Laurent Christophe es_ES
dc.contributor.author Martí Sendra, Javier es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2015-07-01T10:56:56Z
dc.date.issued 2014-05
dc.identifier.issn 1863-8880
dc.identifier.uri http://hdl.handle.net/10251/52557
dc.description.abstract Optical nanoantennas efficiently convert confined optical energy into free-space radiation. The polarization of the emitted radiation depends mainly on nanoantenna shape, so it becomes extremely difficult to manipulate it unless the nanostructure is physically altered. Here, a simple way is demonstrated to synthetize the polarization of the radiation emitted by a single nanoantenna so that every point on the Poincare sphere becomes attainable. The nanoantenna consists of a single scatterer created on a dielectric waveguide and fed from its both sides so that the polarization of the emitted optical radiation is controlled by the amplitude and phase of the feeding signals. The nanoantenna is created on a silicon chip using standard top-down nanofabrication tools, but the method is universal and can be applied to other materials, wavelengths and technologies. This work will open the way towards the synthesis and control of arbitrary polarization states in nano-optics. es_ES
dc.description.sponsorship This work has received financial support from Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02). D. Puerto acknowledges support from grant Juan de la Cierva (JCI-2010-07479). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Laser and Photonics Reviews es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanoantennas es_ES
dc.subject Polarization es_ES
dc.subject Silicon photonics es_ES
dc.subject Poincaré sphere es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/lpor.201300184
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Rodríguez Fortuño, FJ.; Puerto Garcia, D.; Griol Barres, A.; Bellieres, LC.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas. Laser and Photonics Reviews. 8(3):27-31. https://doi.org/10.1002/lpor.201300184 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/lpor.201300184 es_ES
dc.description.upvformatpinicio 27 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 268428
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Tinbergen, J. (1996). Astronomical Polarimetry. doi:10.1017/cbo9780511525100 es_ES
dc.description.references Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM. Journal of Lightwave Technology, 28(4), 547-556. doi:10.1109/jlt.2009.2031922 es_ES
dc.description.references Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., … Mataloni, P. (2011). Integrated photonic quantum gates for polarization qubits. Nature Communications, 2(1). doi:10.1038/ncomms1570 es_ES
dc.description.references Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., & Zeilinger, A. (2004). Quantum teleportation across the Danube. Nature, 430(7002), 849-849. doi:10.1038/430849a es_ES
dc.description.references Kwiat, P. G., Barraza-Lopez, S., Stefanov, A., & Gisin, N. (2001). Experimental entanglement distillation and ‘hidden’ non-locality. Nature, 409(6823), 1014-1017. doi:10.1038/35059017 es_ES
dc.description.references Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81 es_ES
dc.description.references Korech, O., Steinitz, U., Gordon, R. J., Averbukh, I. S., & Prior, Y. (2013). Observing molecular spinning via the rotational Doppler effect. Nature Photonics, 7(9), 711-714. doi:10.1038/nphoton.2013.189 es_ES
dc.description.references Kimel, A. V., Kirilyuk, A., Usachev, P. A., Pisarev, R. V., Balbashov, A. M., & Rasing, T. (2005). Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435(7042), 655-657. doi:10.1038/nature03564 es_ES
dc.description.references Stanciu, C. D., Hansteen, F., Kimel, A. V., Kirilyuk, A., Tsukamoto, A., Itoh, A., & Rasing, T. (2007). All-Optical Magnetic Recording with Circularly Polarized Light. Physical Review Letters, 99(4). doi:10.1103/physrevlett.99.047601 es_ES
dc.description.references Muhlschlegel, P. (2005). Resonant Optical Antennas. Science, 308(5728), 1607-1609. doi:10.1126/science.1111886 es_ES
dc.description.references Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599 es_ES
dc.description.references Bharadwaj, P., Deutsch, B., & Novotny, L. (2009). Optical Antennas. Advances in Optics and Photonics, 1(3), 438. doi:10.1364/aop.1.000438 es_ES
dc.description.references Greffet, J.-J. (2005). APPLIED PHYSICS: Nanoantennas for Light Emission. Science, 308(5728), 1561-1563. doi:10.1126/science.1113355 es_ES
dc.description.references Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727 es_ES
dc.description.references Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237 es_ES
dc.description.references Knight, M. W., Sobhani, H., Nordlander, P., & Halas, N. J. (2011). Photodetection with Active Optical Antennas. Science, 332(6030), 702-704. doi:10.1126/science.1203056 es_ES
dc.description.references Lin, J., Mueller, J. P. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., & Capasso, F. (2013). Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340(6130), 331-334. doi:10.1126/science.1233746 es_ES
dc.description.references Rodriguez-Fortuno, F. J., Marino, G., Ginzburg, P., O’Connor, D., Martinez, A., Wurtz, G. A., & Zayats, A. V. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 340(6130), 328-330. doi:10.1126/science.1233739 es_ES
dc.description.references Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., & Lee, B. (2012). Role of Magnetic Induction Currents in Nanoslit Excitation of Surface Plasmon Polaritons. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213907 es_ES
dc.description.references Huang, L., Chen, X., Bai, B., Tan, Q., Jin, G., Zentgraf, T., & Zhang, S. (2013). Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2(3), e70-e70. doi:10.1038/lsa.2013.26 es_ES
dc.description.references J. P. B. Mueller F. Capasso 2013 es_ES
dc.description.references Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., … Zhang, X. (2011). A graphene-based broadband optical modulator. Nature, 474(7349), 64-67. doi:10.1038/nature10067 es_ES
dc.description.references Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., … Martí, J. (2011). High speed silicon electro-optical modulators enhanced via slow light propagation. Optics Express, 19(21), 20876. doi:10.1364/oe.19.020876 es_ES
dc.description.references Chen, E., & Chou, S. Y. (1997). A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors. IEEE Photonics Technology Letters, 9(9), 1259-1261. doi:10.1109/68.618497 es_ES
dc.description.references Afshinmanesh, F., White, J. S., Cai, W., & Brongersma, M. L. (2012). Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics, 1(2). doi:10.1515/nanoph-2012-0004 es_ES
dc.description.references Legré, M., Wegmüller, M., & Gisin, N. (2003). Quantum Measurement of the Degree of Polarization of a Light Beam. Physical Review Letters, 91(16). doi:10.1103/physrevlett.91.167902 es_ES
dc.description.references Huttner, B., Muller, A., Gautier, J. D., Zbinden, H., & Gisin, N. (1996). Unambiguous quantum measurement of nonorthogonal states. Physical Review A, 54(5), 3783-3789. doi:10.1103/physreva.54.3783 es_ES
dc.description.references Cai, X., Wang, J., Strain, M. J., Johnson-Morris, B., Zhu, J., Sorel, M., … Yu, S. (2012). Integrated Compact Optical Vortex Beam Emitters. Science, 338(6105), 363-366. doi:10.1126/science.1226528 es_ES
dc.description.references Gorodetski, Y., Drezet, A., Genet, C., & Ebbesen, T. W. (2013). Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203906 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem