Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez Fortuño, Francisco José | es_ES |
dc.contributor.author | Puerto Garcia, Daniel | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Bellieres, Laurent Christophe | es_ES |
dc.contributor.author | Martí Sendra, Javier | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.date.accessioned | 2015-07-01T10:56:56Z | |
dc.date.issued | 2014-05 | |
dc.identifier.issn | 1863-8880 | |
dc.identifier.uri | http://hdl.handle.net/10251/52557 | |
dc.description.abstract | Optical nanoantennas efficiently convert confined optical energy into free-space radiation. The polarization of the emitted radiation depends mainly on nanoantenna shape, so it becomes extremely difficult to manipulate it unless the nanostructure is physically altered. Here, a simple way is demonstrated to synthetize the polarization of the radiation emitted by a single nanoantenna so that every point on the Poincare sphere becomes attainable. The nanoantenna consists of a single scatterer created on a dielectric waveguide and fed from its both sides so that the polarization of the emitted optical radiation is controlled by the amplitude and phase of the feeding signals. The nanoantenna is created on a silicon chip using standard top-down nanofabrication tools, but the method is universal and can be applied to other materials, wavelengths and technologies. This work will open the way towards the synthesis and control of arbitrary polarization states in nano-optics. | es_ES |
dc.description.sponsorship | This work has received financial support from Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02). D. Puerto acknowledges support from grant Juan de la Cierva (JCI-2010-07479). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Laser and Photonics Reviews | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanoantennas | es_ES |
dc.subject | Polarization | es_ES |
dc.subject | Silicon photonics | es_ES |
dc.subject | Poincaré sphere | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/lpor.201300184 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Rodríguez Fortuño, FJ.; Puerto Garcia, D.; Griol Barres, A.; Bellieres, LC.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Universal method for the synthesis of arbitrary polarization states radiated by a nanoantennas. Laser and Photonics Reviews. 8(3):27-31. https://doi.org/10.1002/lpor.201300184 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/lpor.201300184 | es_ES |
dc.description.upvformatpinicio | 27 | es_ES |
dc.description.upvformatpfin | 31 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 268428 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Tinbergen, J. (1996). Astronomical Polarimetry. doi:10.1017/cbo9780511525100 | es_ES |
dc.description.references | Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM. Journal of Lightwave Technology, 28(4), 547-556. doi:10.1109/jlt.2009.2031922 | es_ES |
dc.description.references | Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., … Mataloni, P. (2011). Integrated photonic quantum gates for polarization qubits. Nature Communications, 2(1). doi:10.1038/ncomms1570 | es_ES |
dc.description.references | Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., & Zeilinger, A. (2004). Quantum teleportation across the Danube. Nature, 430(7002), 849-849. doi:10.1038/430849a | es_ES |
dc.description.references | Kwiat, P. G., Barraza-Lopez, S., Stefanov, A., & Gisin, N. (2001). Experimental entanglement distillation and ‘hidden’ non-locality. Nature, 409(6823), 1014-1017. doi:10.1038/35059017 | es_ES |
dc.description.references | Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81 | es_ES |
dc.description.references | Korech, O., Steinitz, U., Gordon, R. J., Averbukh, I. S., & Prior, Y. (2013). Observing molecular spinning via the rotational Doppler effect. Nature Photonics, 7(9), 711-714. doi:10.1038/nphoton.2013.189 | es_ES |
dc.description.references | Kimel, A. V., Kirilyuk, A., Usachev, P. A., Pisarev, R. V., Balbashov, A. M., & Rasing, T. (2005). Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435(7042), 655-657. doi:10.1038/nature03564 | es_ES |
dc.description.references | Stanciu, C. D., Hansteen, F., Kimel, A. V., Kirilyuk, A., Tsukamoto, A., Itoh, A., & Rasing, T. (2007). All-Optical Magnetic Recording with Circularly Polarized Light. Physical Review Letters, 99(4). doi:10.1103/physrevlett.99.047601 | es_ES |
dc.description.references | Muhlschlegel, P. (2005). Resonant Optical Antennas. Science, 308(5728), 1607-1609. doi:10.1126/science.1111886 | es_ES |
dc.description.references | Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599 | es_ES |
dc.description.references | Bharadwaj, P., Deutsch, B., & Novotny, L. (2009). Optical Antennas. Advances in Optics and Photonics, 1(3), 438. doi:10.1364/aop.1.000438 | es_ES |
dc.description.references | Greffet, J.-J. (2005). APPLIED PHYSICS: Nanoantennas for Light Emission. Science, 308(5728), 1561-1563. doi:10.1126/science.1113355 | es_ES |
dc.description.references | Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727 | es_ES |
dc.description.references | Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237 | es_ES |
dc.description.references | Knight, M. W., Sobhani, H., Nordlander, P., & Halas, N. J. (2011). Photodetection with Active Optical Antennas. Science, 332(6030), 702-704. doi:10.1126/science.1203056 | es_ES |
dc.description.references | Lin, J., Mueller, J. P. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., & Capasso, F. (2013). Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340(6130), 331-334. doi:10.1126/science.1233746 | es_ES |
dc.description.references | Rodriguez-Fortuno, F. J., Marino, G., Ginzburg, P., O’Connor, D., Martinez, A., Wurtz, G. A., & Zayats, A. V. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 340(6130), 328-330. doi:10.1126/science.1233739 | es_ES |
dc.description.references | Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., & Lee, B. (2012). Role of Magnetic Induction Currents in Nanoslit Excitation of Surface Plasmon Polaritons. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213907 | es_ES |
dc.description.references | Huang, L., Chen, X., Bai, B., Tan, Q., Jin, G., Zentgraf, T., & Zhang, S. (2013). Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2(3), e70-e70. doi:10.1038/lsa.2013.26 | es_ES |
dc.description.references | J. P. B. Mueller F. Capasso 2013 | es_ES |
dc.description.references | Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., … Zhang, X. (2011). A graphene-based broadband optical modulator. Nature, 474(7349), 64-67. doi:10.1038/nature10067 | es_ES |
dc.description.references | Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., … Martí, J. (2011). High speed silicon electro-optical modulators enhanced via slow light propagation. Optics Express, 19(21), 20876. doi:10.1364/oe.19.020876 | es_ES |
dc.description.references | Chen, E., & Chou, S. Y. (1997). A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors. IEEE Photonics Technology Letters, 9(9), 1259-1261. doi:10.1109/68.618497 | es_ES |
dc.description.references | Afshinmanesh, F., White, J. S., Cai, W., & Brongersma, M. L. (2012). Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics, 1(2). doi:10.1515/nanoph-2012-0004 | es_ES |
dc.description.references | Legré, M., Wegmüller, M., & Gisin, N. (2003). Quantum Measurement of the Degree of Polarization of a Light Beam. Physical Review Letters, 91(16). doi:10.1103/physrevlett.91.167902 | es_ES |
dc.description.references | Huttner, B., Muller, A., Gautier, J. D., Zbinden, H., & Gisin, N. (1996). Unambiguous quantum measurement of nonorthogonal states. Physical Review A, 54(5), 3783-3789. doi:10.1103/physreva.54.3783 | es_ES |
dc.description.references | Cai, X., Wang, J., Strain, M. J., Johnson-Morris, B., Zhu, J., Sorel, M., … Yu, S. (2012). Integrated Compact Optical Vortex Beam Emitters. Science, 338(6105), 363-366. doi:10.1126/science.1226528 | es_ES |
dc.description.references | Gorodetski, Y., Drezet, A., Genet, C., & Ebbesen, T. W. (2013). Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203906 | es_ES |