- -

Hydraulic transient in residential buildings with a direct pump connection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydraulic transient in residential buildings with a direct pump connection

Mostrar el registro completo del ítem

Soriano Olivares, J.; Arregui De La Cruz, F.; Espert Alemany, VB.; García-Serra García, J. (2014). Hydraulic transient in residential buildings with a direct pump connection. Urban Water Journal. 2014:1-13. https://doi.org/10.1080/1573062X.2014.989860

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52779

Ficheros en el ítem

Metadatos del ítem

Título: Hydraulic transient in residential buildings with a direct pump connection
Autor: Soriano Olivares, Javier Arregui de la Cruz, Francisco Espert Alemany, Vicent B. García-Serra García, Jorge
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
This paper consists of an experimental and numerical study into transient behaviour in a residential building. The analysed effects occur by centrifugal pumps when they start with a direct supply (fixed-speed pumps are ...[+]
Palabras clave: Hydraulic transient , Water hammer , Direct supply , Water plumbing system , Pump station
Derechos de uso: Reserva de todos los derechos
Fuente:
Urban Water Journal. (issn: 1573-062X ) (eissn: 1744-9006 )
DOI: 10.1080/1573062X.2014.989860
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/1573062X.2014.989860
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CGL2005-03666/ES/ORDENACION Y VALORACION DE ESTRATEGIAS ORIENTADAS A LA PROGRESIVA ELIMINACION DE LOS DEPOSITOS DE ALMACENAMIENTO DE LOS USUARIOS EN LOS ABASTECIMIENTOS DE AGUA URBANOS/
Agradecimientos:
This work was supported by the Ministerio de Educacion y Ciencia of the Spanish Government under Grant No CGL2005-03666.
Tipo: Artículo

References

Basupi, I., Kapelan, Z., & Butler, D. (2013). Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions. Urban Water Journal, 11(2), 91-107. doi:10.1080/1573062x.2012.750374

Bergant, A., Tijsseling, A. S., Vítkovský, J. P., Covas, D. I. C., Simpson, A. R., & Lambert, M. F. (2008). Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools. Journal of Hydraulic Research, 46(3), 373-381. doi:10.3826/jhr.2008.2848

Cantor, K. P., Lynch, C. F., Hildesheim, M., Dosemeci, M., Lubin, J., Alavanja, M., & Craun, G. (1998). Drinking Water Source and Chlorination Byproducts I. Risk of Bladder Cancer. Epidemiology, 9(1), 21-28. doi:10.1097/00001648-199801000-00007 [+]
Basupi, I., Kapelan, Z., & Butler, D. (2013). Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions. Urban Water Journal, 11(2), 91-107. doi:10.1080/1573062x.2012.750374

Bergant, A., Tijsseling, A. S., Vítkovský, J. P., Covas, D. I. C., Simpson, A. R., & Lambert, M. F. (2008). Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools. Journal of Hydraulic Research, 46(3), 373-381. doi:10.3826/jhr.2008.2848

Cantor, K. P., Lynch, C. F., Hildesheim, M., Dosemeci, M., Lubin, J., Alavanja, M., & Craun, G. (1998). Drinking Water Source and Chlorination Byproducts I. Risk of Bladder Cancer. Epidemiology, 9(1), 21-28. doi:10.1097/00001648-199801000-00007

Clark, R. M., Sivaganesan, M., Selvakumar, A., & Sethi, V. (2002). Cost Models for Water Supply Distribution Systems. Journal of Water Resources Planning and Management, 128(5), 312-321. doi:10.1061/(asce)0733-9496(2002)128:5(312)

Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212-227. doi:10.1016/j.jher.2009.02.003

Courtis, B. J., West, J. R., & Bridgeman, J. (2009). Chlorine demand-based predictive modeling of THM formation in water distribution networks. Urban Water Journal, 6(6), 407-415. doi:10.1080/15730620903038461

Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimović, Č., & Butler, D. (2004). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. doi:10.1080/15730620412331289977

Criminisi, A., Fontanazza, C. M., Freni, G., & Loggia, G. L. (2009). Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply. Water Science and Technology, 60(9), 2373-2382. doi:10.2166/wst.2009.423

Davis, A. (2004). Hydraulic transients in transmission and distribution systems. Urban Water Journal, 1(2), 157-166. doi:10.1080/15730620412331289968

De Marchis, M., Fontanazza, C. M., Freni, G., La Loggia, G., Napoli, E., & Notaro, V. (2010). A model of the filling process of an intermittent distribution network. Urban Water Journal, 7(6), 321-333. doi:10.1080/1573062x.2010.519776

Fontanazza, C. M., Notaro, V., Puleo, V., & Freni, G. (2014). The apparent losses due to metering errors: a proactive approach to predict losses and schedule maintenance. Urban Water Journal, 12(3), 229-239. doi:10.1080/1573062x.2014.882363

Golfinopoulos, S. K. (2000). The occurrence of trihalomethanes in the drinking water in Greece. Chemosphere, 41(11), 1761-1767. doi:10.1016/s0045-6535(00)00062-x

Hua, F., West, J. ., Barker, R. ., & Forster, C. . (1999). Modelling of chlorine decay in municipal water supplies. Water Research, 33(12), 2735-2746. doi:10.1016/s0043-1354(98)00519-3

Jung, B. S., & Karney, B. (2004). Fluid transients and pipeline optimization using GA and PSO: the diameter connection. Urban Water Journal, 1(2), 167-176. doi:10.1080/15730620412331289995

Kanakoudis, V., & Muhammetoglu, H. (2013). Urban Water Pipe Networks Management Towards Non-Revenue Water Reduction: Two Case Studies from Greece and Turkey. CLEAN - Soil, Air, Water, 42(7), 880-892. doi:10.1002/clen.201300138

Kanakoudis, V., & Papadopoulou, A. (2014). Allocating the cost of the carbon footprint produced along a supply chain, among the stakeholders involved. Journal of Water and Climate Change, 5(4), 556-568. doi:10.2166/wcc.2014.101

Kanakoudis, V., & Tsitsifli, S. (2010). Results of an urban water distribution network performance evaluation attempt in Greece. Urban Water Journal, 7(5), 267-285. doi:10.1080/1573062x.2010.509436

Kirmeyer, G.J., Richards, W., and Dery-Smith, C., 1994. An assessment of water distribution systems and associated needs.Report of the American Water Work. Denver, CO: Association Research Foundation.

Kitis, M., Yigita, N. O., Harmana, B. I., Muhammetoglu, H., Muhammetoglu, A., Karadirek, I. E., … Palancic, I. (2010). Occurrence of Trihalomethanes in Chlorinated Groundwaters with Very Low Natural Organic Matter and Bromide Concentrations. Environmental Forensics, 11(3), 264-274. doi:10.1080/15275922.2010.495935

Levesque, S., Rodriguez, M. J., Serodes, J., Beaulieu, C., & Proulx, F. (2006). Effects of indoor drinking water handling on trihalomethanes and haloacetic acids. Water Research, 40(15), 2921-2930. doi:10.1016/j.watres.2006.06.004

Mohamed, H. I., & Gad, A. A. M. (2011). Effect of Cold-Water Storage Cisterns on Drinking-Water Quality. Journal of Water Resources Planning and Management, 137(5), 448-455. doi:10.1061/(asce)wr.1943-5452.0000132

Nieuwenhuijsen, M. J. (2000). Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and Environmental Medicine, 57(2), 73-85. doi:10.1136/oem.57.2.73

Pezzinga, G. (2000). Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models. Journal of Hydraulic Engineering, 126(10), 778-785. doi:10.1061/(asce)0733-9429(2000)126:10(778)

Rodriguez, M. J., Sérodes, J.-B., & Levallois, P. (2004). Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system. Water Research, 38(20), 4367-4382. doi:10.1016/j.watres.2004.08.018

Rossman, L. A., Clark, R. M., & Grayman, W. M. (1994). Modeling Chlorine Residuals in Drinking‐Water Distribution Systems. Journal of Environmental Engineering, 120(4), 803-820. doi:10.1061/(asce)0733-9372(1994)120:4(803)

Schafer, C. A., & Mihelcic, J. R. (2012). Effect of storage tank material and maintenance on household water quality. Journal - American Water Works Association, 104(9), E521-E529. doi:10.5942/jawwa.2012.104.0125

Soyupak, S., Kilic, H., Karadirek, I. E., & Muhammetoglu, H. (2011). On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water. Journal of Water Supply: Research and Technology-Aqua, 60(1), 51-60. doi:10.2166/aqua.2011.086

Tamari, S., & Ploquet, J. (2012). Determination of leakage inside buildings with a roof tank. Urban Water Journal, 9(5), 287-303. doi:10.1080/1573062x.2012.660959

Thorley, A.R.D., 2004. Fluid Transients in Pipeline Systems. London: Professional Engineering Publishing.

Tsukamoto, H., & Ohashi, H. (1982). Transient Characteristics of a Centrifugal Pump During Starting Period. Journal of Fluids Engineering, 104(1), 6-13. doi:10.1115/1.3240859

Villanueva, C. ., Kogevinas, M., & Grimalt, J. . (2003). Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4), 953-958. doi:10.1016/s0043-1354(02)00411-6

Wilo, A. (2007). Intelligent pumps for building automation systems. World Pumps, 2007(490), 26-32. doi:10.1016/s0262-1762(07)70252-3

Woolschlager, J., Rittmann, B., & Piriou, P. (2005). Water quality decay in distribution systems – problems, causes, and new modeling tools. Urban Water Journal, 2(2), 69-79. doi:10.1080/15730620500144027

Wylie, E.B. and Streeter, V.L., 1993. Fluid Transients in Systems. Englewood Cliffs, NJ: Prentice Hall.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem