Mostrar el registro sencillo del ítem
dc.contributor.author | Soriano Olivares, Javier | es_ES |
dc.contributor.author | Arregui de la Cruz, Francisco | es_ES |
dc.contributor.author | Espert Alemany, Vicent B. | es_ES |
dc.contributor.author | García-Serra García, Jorge | es_ES |
dc.date.accessioned | 2015-07-07T10:48:16Z | |
dc.date.available | 2015-07-07T10:48:16Z | |
dc.date.issued | 2014-12-20 | |
dc.identifier.issn | 1573-062X | |
dc.identifier.uri | http://hdl.handle.net/10251/52779 | |
dc.description.abstract | This paper consists of an experimental and numerical study into transient behaviour in a residential building. The analysed effects occur by centrifugal pumps when they start with a direct supply (fixed-speed pumps are connected to the service pipe without an atmospheric tank). Direct supply increases the transient effect and places higher demands on the water main. The properties of such an installation were analysed using a hydraulic model in order to detect the most unfavourable scenario. The results were compared to experimental data. Basic hydraulics demonstrates that a pressure drop occurs during the startup. The magnitude mainly depends on the pump capacity. But, numerical and field results show that other variables related to service pipe design could also negatively affect the pressure surge. The study provides water utilities with information about the influence of the different variables on pressure surge magnitude and basic design criteria to minimize these effects. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Educacion y Ciencia of the Spanish Government under Grant No CGL2005-03666. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Urban Water Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hydraulic transient | es_ES |
dc.subject | Water hammer | es_ES |
dc.subject | Direct supply | es_ES |
dc.subject | Water plumbing system | es_ES |
dc.subject | Pump station | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Hydraulic transient in residential buildings with a direct pump connection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/1573062X.2014.989860 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CGL2005-03666/ES/ORDENACION Y VALORACION DE ESTRATEGIAS ORIENTADAS A LA PROGRESIVA ELIMINACION DE LOS DEPOSITOS DE ALMACENAMIENTO DE LOS USUARIOS EN LOS ABASTECIMIENTOS DE AGUA URBANOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Soriano Olivares, J.; Arregui De La Cruz, F.; Espert Alemany, VB.; García-Serra García, J. (2014). Hydraulic transient in residential buildings with a direct pump connection. Urban Water Journal. 2014:1-13. https://doi.org/10.1080/1573062X.2014.989860 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/1573062X.2014.989860 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 286971 | |
dc.identifier.eissn | 1744-9006 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Basupi, I., Kapelan, Z., & Butler, D. (2013). Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions. Urban Water Journal, 11(2), 91-107. doi:10.1080/1573062x.2012.750374 | es_ES |
dc.description.references | Bergant, A., Tijsseling, A. S., Vítkovský, J. P., Covas, D. I. C., Simpson, A. R., & Lambert, M. F. (2008). Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools. Journal of Hydraulic Research, 46(3), 373-381. doi:10.3826/jhr.2008.2848 | es_ES |
dc.description.references | Cantor, K. P., Lynch, C. F., Hildesheim, M., Dosemeci, M., Lubin, J., Alavanja, M., & Craun, G. (1998). Drinking Water Source and Chlorination Byproducts I. Risk of Bladder Cancer. Epidemiology, 9(1), 21-28. doi:10.1097/00001648-199801000-00007 | es_ES |
dc.description.references | Clark, R. M., Sivaganesan, M., Selvakumar, A., & Sethi, V. (2002). Cost Models for Water Supply Distribution Systems. Journal of Water Resources Planning and Management, 128(5), 312-321. doi:10.1061/(asce)0733-9496(2002)128:5(312) | es_ES |
dc.description.references | Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212-227. doi:10.1016/j.jher.2009.02.003 | es_ES |
dc.description.references | Courtis, B. J., West, J. R., & Bridgeman, J. (2009). Chlorine demand-based predictive modeling of THM formation in water distribution networks. Urban Water Journal, 6(6), 407-415. doi:10.1080/15730620903038461 | es_ES |
dc.description.references | Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimović, Č., & Butler, D. (2004). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. doi:10.1080/15730620412331289977 | es_ES |
dc.description.references | Criminisi, A., Fontanazza, C. M., Freni, G., & Loggia, G. L. (2009). Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply. Water Science and Technology, 60(9), 2373-2382. doi:10.2166/wst.2009.423 | es_ES |
dc.description.references | Davis, A. (2004). Hydraulic transients in transmission and distribution systems. Urban Water Journal, 1(2), 157-166. doi:10.1080/15730620412331289968 | es_ES |
dc.description.references | De Marchis, M., Fontanazza, C. M., Freni, G., La Loggia, G., Napoli, E., & Notaro, V. (2010). A model of the filling process of an intermittent distribution network. Urban Water Journal, 7(6), 321-333. doi:10.1080/1573062x.2010.519776 | es_ES |
dc.description.references | Fontanazza, C. M., Notaro, V., Puleo, V., & Freni, G. (2014). The apparent losses due to metering errors: a proactive approach to predict losses and schedule maintenance. Urban Water Journal, 12(3), 229-239. doi:10.1080/1573062x.2014.882363 | es_ES |
dc.description.references | Golfinopoulos, S. K. (2000). The occurrence of trihalomethanes in the drinking water in Greece. Chemosphere, 41(11), 1761-1767. doi:10.1016/s0045-6535(00)00062-x | es_ES |
dc.description.references | Hua, F., West, J. ., Barker, R. ., & Forster, C. . (1999). Modelling of chlorine decay in municipal water supplies. Water Research, 33(12), 2735-2746. doi:10.1016/s0043-1354(98)00519-3 | es_ES |
dc.description.references | Jung, B. S., & Karney, B. (2004). Fluid transients and pipeline optimization using GA and PSO: the diameter connection. Urban Water Journal, 1(2), 167-176. doi:10.1080/15730620412331289995 | es_ES |
dc.description.references | Kanakoudis, V., & Muhammetoglu, H. (2013). Urban Water Pipe Networks Management Towards Non-Revenue Water Reduction: Two Case Studies from Greece and Turkey. CLEAN - Soil, Air, Water, 42(7), 880-892. doi:10.1002/clen.201300138 | es_ES |
dc.description.references | Kanakoudis, V., & Papadopoulou, A. (2014). Allocating the cost of the carbon footprint produced along a supply chain, among the stakeholders involved. Journal of Water and Climate Change, 5(4), 556-568. doi:10.2166/wcc.2014.101 | es_ES |
dc.description.references | Kanakoudis, V., & Tsitsifli, S. (2010). Results of an urban water distribution network performance evaluation attempt in Greece. Urban Water Journal, 7(5), 267-285. doi:10.1080/1573062x.2010.509436 | es_ES |
dc.description.references | Kirmeyer, G.J., Richards, W., and Dery-Smith, C., 1994. An assessment of water distribution systems and associated needs.Report of the American Water Work. Denver, CO: Association Research Foundation. | es_ES |
dc.description.references | Kitis, M., Yigita, N. O., Harmana, B. I., Muhammetoglu, H., Muhammetoglu, A., Karadirek, I. E., … Palancic, I. (2010). Occurrence of Trihalomethanes in Chlorinated Groundwaters with Very Low Natural Organic Matter and Bromide Concentrations. Environmental Forensics, 11(3), 264-274. doi:10.1080/15275922.2010.495935 | es_ES |
dc.description.references | Levesque, S., Rodriguez, M. J., Serodes, J., Beaulieu, C., & Proulx, F. (2006). Effects of indoor drinking water handling on trihalomethanes and haloacetic acids. Water Research, 40(15), 2921-2930. doi:10.1016/j.watres.2006.06.004 | es_ES |
dc.description.references | Mohamed, H. I., & Gad, A. A. M. (2011). Effect of Cold-Water Storage Cisterns on Drinking-Water Quality. Journal of Water Resources Planning and Management, 137(5), 448-455. doi:10.1061/(asce)wr.1943-5452.0000132 | es_ES |
dc.description.references | Nieuwenhuijsen, M. J. (2000). Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and Environmental Medicine, 57(2), 73-85. doi:10.1136/oem.57.2.73 | es_ES |
dc.description.references | Pezzinga, G. (2000). Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models. Journal of Hydraulic Engineering, 126(10), 778-785. doi:10.1061/(asce)0733-9429(2000)126:10(778) | es_ES |
dc.description.references | Rodriguez, M. J., Sérodes, J.-B., & Levallois, P. (2004). Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system. Water Research, 38(20), 4367-4382. doi:10.1016/j.watres.2004.08.018 | es_ES |
dc.description.references | Rossman, L. A., Clark, R. M., & Grayman, W. M. (1994). Modeling Chlorine Residuals in Drinking‐Water Distribution Systems. Journal of Environmental Engineering, 120(4), 803-820. doi:10.1061/(asce)0733-9372(1994)120:4(803) | es_ES |
dc.description.references | Schafer, C. A., & Mihelcic, J. R. (2012). Effect of storage tank material and maintenance on household water quality. Journal - American Water Works Association, 104(9), E521-E529. doi:10.5942/jawwa.2012.104.0125 | es_ES |
dc.description.references | Soyupak, S., Kilic, H., Karadirek, I. E., & Muhammetoglu, H. (2011). On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water. Journal of Water Supply: Research and Technology-Aqua, 60(1), 51-60. doi:10.2166/aqua.2011.086 | es_ES |
dc.description.references | Tamari, S., & Ploquet, J. (2012). Determination of leakage inside buildings with a roof tank. Urban Water Journal, 9(5), 287-303. doi:10.1080/1573062x.2012.660959 | es_ES |
dc.description.references | Thorley, A.R.D., 2004. Fluid Transients in Pipeline Systems. London: Professional Engineering Publishing. | es_ES |
dc.description.references | Tsukamoto, H., & Ohashi, H. (1982). Transient Characteristics of a Centrifugal Pump During Starting Period. Journal of Fluids Engineering, 104(1), 6-13. doi:10.1115/1.3240859 | es_ES |
dc.description.references | Villanueva, C. ., Kogevinas, M., & Grimalt, J. . (2003). Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4), 953-958. doi:10.1016/s0043-1354(02)00411-6 | es_ES |
dc.description.references | Wilo, A. (2007). Intelligent pumps for building automation systems. World Pumps, 2007(490), 26-32. doi:10.1016/s0262-1762(07)70252-3 | es_ES |
dc.description.references | Woolschlager, J., Rittmann, B., & Piriou, P. (2005). Water quality decay in distribution systems – problems, causes, and new modeling tools. Urban Water Journal, 2(2), 69-79. doi:10.1080/15730620500144027 | es_ES |
dc.description.references | Wylie, E.B. and Streeter, V.L., 1993. Fluid Transients in Systems. Englewood Cliffs, NJ: Prentice Hall. | es_ES |