Mostrar el registro completo del ítem
Safont Armero, G.; Salazar Afanador, A.; Rodriguez Martinez, A.; Vergara Domínguez, L. (2013). Extensions of Independent Component Analysis Mixture Models for classification and prediction of EEG signals. WAVES. 5:59-68. http://hdl.handle.net/10251/52797
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52797
Título: | Extensions of Independent Component Analysis Mixture Models for classification and prediction of EEG signals | |
Autor: | Rodriguez Martinez, Alberto | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] This paper presents two applications of Independent Component Analysis Mixture Modeling (ICAMM) for the classification and prediction of data. The first one of these extensions is Sequential ICAMM (SICAMM), an ICAMM ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
Versión del editor: | http://www.iteam.upv.es/waves.php?id=6&lang=es | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work has been supported by Universitat Politècnica de Valencia under grant 20130072, Generalitat Valenciana under grants PROMETEO/2010/040 and ISIC/2012/006; and Spanish Administration and European Union FEDER Programme ...[+]
|
|
Tipo: |
|