Mostrar el registro sencillo del ítem
dc.contributor.author | Guardiola, Carlos | es_ES |
dc.contributor.author | Plá Moreno, Benjamín | es_ES |
dc.contributor.author | Blanco-Rodriguez, David | es_ES |
dc.contributor.author | Mazer, Alexandre | es_ES |
dc.contributor.author | Hayat, Olivier | es_ES |
dc.date.accessioned | 2015-07-08T11:14:57Z | |
dc.date.available | 2015-07-08T11:14:57Z | |
dc.date.issued | 2013-08 | |
dc.identifier.issn | 0954-4070 | |
dc.identifier.uri | http://hdl.handle.net/10251/52828 | |
dc.description.abstract | l probes in turbocharged diesel engines are usually located downstream of the turbine, exhibiting a good dynamic response but a significant delay because of the exhaust line transport and the hardware itself. With the introduction of after-treatment systems, new sensors that can measure the exhaust concentrations are required for optimal control and diagnosis. Zirconia-based potentiometric sensors permit the measurement of nitrogen oxides and oxygen with the same hardware. However, their dynamic response is slower and more filtered than that of traditional l probes and, in addition, the sensor location downstream of the after-treatment systems increases this problem. The paper uses a Kalman filter for online dynamic estimation of the relative fuel-to-air ratio l21 in a turbocharged diesel engine. The combination of a fast drifted fuel-to-air ratio model with a slow but accurate zirconia sensor permits the model bias to be corrected. This bias is modelled with a look-up table depending on the engine operating point and is integrated online on the basis of the Kalman filter output. The calculation burden is alleviated by using the converged gain of the steady-state Kalman filter, precalculated offline. Finally, robustness conditions for stopping the bias updating are included in order to account for the sensor and model uncertainties. The proposed algorithm and sensor layout are successfully proved in a turbocharged diesel engine. Experimental and simulation results are included to support validation of the algorithm. | es_ES |
dc.description.sponsorship | This work was partially supported through project HIREFIRE (grant number: IPT-370000-2010-022). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Kalman filter | es_ES |
dc.subject | Bias correction | es_ES |
dc.subject | Drift correction | es_ES |
dc.subject | Look-up table | es_ES |
dc.subject | Turbocharged engine | es_ES |
dc.subject | Fuel-to-air ratio | es_ES |
dc.subject | Richness | es_ES |
dc.subject | Adaptive modelling | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | A bias correction method for fast fuel-to-air ratio estimation in diesel engines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0954407012473415 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IPT-370000-2010-022/ES/INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍAS DE EGR ADAPTADAS A LAS NUEVAS ARQUITECTURAS Y REQUERIMIENTOS DE REFRIGERACIÓN EN MOTORES DIESEL SOBREALIMENTADOS PARA AUTOMOCIÓN (HIREFIRE)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Guardiola, C.; Plá Moreno, B.; Blanco-Rodriguez, D.; Mazer, A.; Hayat, O. (2013). A bias correction method for fast fuel-to-air ratio estimation in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 227(8):1099-1111. https://doi.org/10.1177/0954407012473415 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1177/0954407012473415 | es_ES |
dc.description.upvformatpinicio | 1099 | es_ES |
dc.description.upvformatpfin | 1111 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 227 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 252159 | |
dc.identifier.eissn | 2041-2991 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Lu, X., Han, D., & Huang, Z. (2011). Fuel design and management for the control of advanced compression-ignition combustion modes. Progress in Energy and Combustion Science, 37(6), 741-783. doi:10.1016/j.pecs.2011.03.003 | es_ES |
dc.description.references | Chiang, C.-J., Stefanopoulou, A. G., & Jankovic, M. (2007). Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines. IEEE Transactions on Control Systems Technology, 15(3), 438-448. doi:10.1109/tcst.2007.894637 | es_ES |
dc.description.references | Riegel, J. (2002). Exhaust gas sensors for automotive emission control. Solid State Ionics, 152-153, 783-800. doi:10.1016/s0167-2738(02)00329-6 | es_ES |
dc.description.references | ZHUIYKOV, S., & MIURA, N. (2007). Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? Sensors and Actuators B: Chemical, 121(2), 639-651. doi:10.1016/j.snb.2006.03.044 | es_ES |
dc.description.references | Schilling, A., Amstutz, A., & Guzzella, L. (2008). Model-based detection and isolation of faults due to ageing in the air and fuel paths of common-rail direct injection diesel engines equipped with a λ and a nitrogen oxides sensor. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(1), 101-117. doi:10.1243/09544070jauto659 | es_ES |
dc.description.references | Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35-45. doi:10.1115/1.3662552 | es_ES |
dc.description.references | Jones, V. K., Ault, B. A., Franklin, G. F., & Powell, J. D. (1995). Identification and air-fuel ratio control of a spark ignition engine. IEEE Transactions on Control Systems Technology, 3(1), 14-21. doi:10.1109/87.370705 | es_ES |
dc.description.references | Chen-Fang Chang, Fekete, N. P., Amstutz, A., & Powell, J. D. (1995). Air-fuel ratio control in spark-ignition engines using estimation theory. IEEE Transactions on Control Systems Technology, 3(1), 22-31. doi:10.1109/87.370706 | es_ES |
dc.description.references | Wagner, J. R., Dawson, D. M., & Liu Zeyu. (2003). Nonlinear air-to-fuel ratio and engine speed control for hybrid vehicles. IEEE Transactions on Vehicular Technology, 52(1), 184-195. doi:10.1109/tvt.2002.807156 | es_ES |
dc.description.references | Muske, K. R., Jones, J. C. P., & Franceschi, E. M. (2008). Adaptive Analytical Model-Based Control for SI Engine Air–Fuel Ratio. IEEE Transactions on Control Systems Technology, 16(4), 763-768. doi:10.1109/tcst.2007.912243 | es_ES |
dc.description.references | Regitz, S., & Collings, N. (2008). Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor. Measurement Science and Technology, 19(7), 075201. doi:10.1088/0957-0233/19/7/075201 | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Guardiola, C., Blanco-Rodriguez, D., & Cuadrado, I. G. (2011). An on-engine method for dynamic characterisation of NOx concentration sensors. Experimental Thermal and Fluid Science, 35(3), 470-476. doi:10.1016/j.expthermflusci.2010.11.010 | es_ES |
dc.description.references | Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Transactions on Automatic Control, 24(1), 36-50. doi:10.1109/tac.1979.1101943 | es_ES |
dc.description.references | Nyberg, M., & Stutte, T. (2004). Model based diagnosis of the air path of an automotive diesel engine. Control Engineering Practice, 12(5), 513-525. doi:10.1016/s0967-0661(03)00120-5 | es_ES |
dc.description.references | Macian, V., Lujan, J. M., Guardiola, C., & Yuste, P. (2006). DFT-based controller for fuel injection unevenness correction in turbocharged diesel engines. IEEE Transactions on Control Systems Technology, 14(5), 819-827. doi:10.1109/tcst.2006.876924 | es_ES |
dc.description.references | Macián, V., Luján, J. M., Guardiola, C., & Perles, A. (2006). A comparison of different methods for fuel delivery unevenness detection in Diesel engines. Mechanical Systems and Signal Processing, 20(8), 2219-2231. doi:10.1016/j.ymssp.2005.04.001 | es_ES |
dc.description.references | Payri, F., Luján, J. M., Guardiola, C., & Rizzoni, G. (2006). Injection diagnosis through common-rail pressure measurement. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(3), 347-357. doi:10.1243/09544070jauto34 | es_ES |
dc.description.references | Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009 | es_ES |
dc.description.references | Galindo, J., Climent, H., Guardiola, C., & Doménech, J. (2009). Strategies for improving the mode transition in a sequential parallel turbocharged automotive diesel engine. International Journal of Automotive Technology, 10(2), 141-149. doi:10.1007/s12239-009-0017-1 | es_ES |
dc.description.references | Kalman, R. E., & Bucy, R. S. (1961). New Results in Linear Filtering and Prediction Theory. Journal of Basic Engineering, 83(1), 95-108. doi:10.1115/1.3658902 | es_ES |
dc.description.references | Rajamani, M. R., & Rawlings, J. B. (2009). Estimation of the disturbance structure from data using semidefinite programming and optimal weighting. Automatica, 45(1), 142-148. doi:10.1016/j.automatica.2008.05.032 | es_ES |
dc.description.references | Höckerdal, E., Frisk, E., & Eriksson, L. (2011). EKF-based adaptation of look-up tables with an air mass-flow sensor application. Control Engineering Practice, 19(5), 442-453. doi:10.1016/j.conengprac.2011.01.006 | es_ES |
dc.description.references | Peyton Jones, J. C., & Muske, K. R. (2009). Identification and adaptation of linear look-up table parameters using an efficient recursive least-squares technique. ISA Transactions, 48(4), 476-483. doi:10.1016/j.isatra.2009.04.007 | es_ES |