- -

A bias correction method for fast fuel-to-air ratio estimation in diesel engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A bias correction method for fast fuel-to-air ratio estimation in diesel engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Plá Moreno, Benjamín es_ES
dc.contributor.author Blanco-Rodriguez, David es_ES
dc.contributor.author Mazer, Alexandre es_ES
dc.contributor.author Hayat, Olivier es_ES
dc.date.accessioned 2015-07-08T11:14:57Z
dc.date.available 2015-07-08T11:14:57Z
dc.date.issued 2013-08
dc.identifier.issn 0954-4070
dc.identifier.uri http://hdl.handle.net/10251/52828
dc.description.abstract l probes in turbocharged diesel engines are usually located downstream of the turbine, exhibiting a good dynamic response but a significant delay because of the exhaust line transport and the hardware itself. With the introduction of after-treatment systems, new sensors that can measure the exhaust concentrations are required for optimal control and diagnosis. Zirconia-based potentiometric sensors permit the measurement of nitrogen oxides and oxygen with the same hardware. However, their dynamic response is slower and more filtered than that of traditional l probes and, in addition, the sensor location downstream of the after-treatment systems increases this problem. The paper uses a Kalman filter for online dynamic estimation of the relative fuel-to-air ratio l21 in a turbocharged diesel engine. The combination of a fast drifted fuel-to-air ratio model with a slow but accurate zirconia sensor permits the model bias to be corrected. This bias is modelled with a look-up table depending on the engine operating point and is integrated online on the basis of the Kalman filter output. The calculation burden is alleviated by using the converged gain of the steady-state Kalman filter, precalculated offline. Finally, robustness conditions for stopping the bias updating are included in order to account for the sensor and model uncertainties. The proposed algorithm and sensor layout are successfully proved in a turbocharged diesel engine. Experimental and simulation results are included to support validation of the algorithm. es_ES
dc.description.sponsorship This work was partially supported through project HIREFIRE (grant number: IPT-370000-2010-022). en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Kalman filter es_ES
dc.subject Bias correction es_ES
dc.subject Drift correction es_ES
dc.subject Look-up table es_ES
dc.subject Turbocharged engine es_ES
dc.subject Fuel-to-air ratio es_ES
dc.subject Richness es_ES
dc.subject Adaptive modelling es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A bias correction method for fast fuel-to-air ratio estimation in diesel engines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954407012473415
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-370000-2010-022/ES/INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍAS DE EGR ADAPTADAS A LAS NUEVAS ARQUITECTURAS Y REQUERIMIENTOS DE REFRIGERACIÓN EN MOTORES DIESEL SOBREALIMENTADOS PARA AUTOMOCIÓN (HIREFIRE)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Guardiola, C.; Plá Moreno, B.; Blanco-Rodriguez, D.; Mazer, A.; Hayat, O. (2013). A bias correction method for fast fuel-to-air ratio estimation in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 227(8):1099-1111. https://doi.org/10.1177/0954407012473415 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/0954407012473415 es_ES
dc.description.upvformatpinicio 1099 es_ES
dc.description.upvformatpfin 1111 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 227 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 252159
dc.identifier.eissn 2041-2991
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Lu, X., Han, D., & Huang, Z. (2011). Fuel design and management for the control of advanced compression-ignition combustion modes. Progress in Energy and Combustion Science, 37(6), 741-783. doi:10.1016/j.pecs.2011.03.003 es_ES
dc.description.references Chiang, C.-J., Stefanopoulou, A. G., & Jankovic, M. (2007). Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines. IEEE Transactions on Control Systems Technology, 15(3), 438-448. doi:10.1109/tcst.2007.894637 es_ES
dc.description.references Riegel, J. (2002). Exhaust gas sensors for automotive emission control. Solid State Ionics, 152-153, 783-800. doi:10.1016/s0167-2738(02)00329-6 es_ES
dc.description.references ZHUIYKOV, S., & MIURA, N. (2007). Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? Sensors and Actuators B: Chemical, 121(2), 639-651. doi:10.1016/j.snb.2006.03.044 es_ES
dc.description.references Schilling, A., Amstutz, A., & Guzzella, L. (2008). Model-based detection and isolation of faults due to ageing in the air and fuel paths of common-rail direct injection diesel engines equipped with a λ and a nitrogen oxides sensor. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(1), 101-117. doi:10.1243/09544070jauto659 es_ES
dc.description.references Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35-45. doi:10.1115/1.3662552 es_ES
dc.description.references Jones, V. K., Ault, B. A., Franklin, G. F., & Powell, J. D. (1995). Identification and air-fuel ratio control of a spark ignition engine. IEEE Transactions on Control Systems Technology, 3(1), 14-21. doi:10.1109/87.370705 es_ES
dc.description.references Chen-Fang Chang, Fekete, N. P., Amstutz, A., & Powell, J. D. (1995). Air-fuel ratio control in spark-ignition engines using estimation theory. IEEE Transactions on Control Systems Technology, 3(1), 22-31. doi:10.1109/87.370706 es_ES
dc.description.references Wagner, J. R., Dawson, D. M., & Liu Zeyu. (2003). Nonlinear air-to-fuel ratio and engine speed control for hybrid vehicles. IEEE Transactions on Vehicular Technology, 52(1), 184-195. doi:10.1109/tvt.2002.807156 es_ES
dc.description.references Muske, K. R., Jones, J. C. P., & Franceschi, E. M. (2008). Adaptive Analytical Model-Based Control for SI Engine Air–Fuel Ratio. IEEE Transactions on Control Systems Technology, 16(4), 763-768. doi:10.1109/tcst.2007.912243 es_ES
dc.description.references Regitz, S., & Collings, N. (2008). Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor. Measurement Science and Technology, 19(7), 075201. doi:10.1088/0957-0233/19/7/075201 es_ES
dc.description.references Galindo, J., Serrano, J. R., Guardiola, C., Blanco-Rodriguez, D., & Cuadrado, I. G. (2011). An on-engine method for dynamic characterisation of NOx concentration sensors. Experimental Thermal and Fluid Science, 35(3), 470-476. doi:10.1016/j.expthermflusci.2010.11.010 es_ES
dc.description.references Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Transactions on Automatic Control, 24(1), 36-50. doi:10.1109/tac.1979.1101943 es_ES
dc.description.references Nyberg, M., & Stutte, T. (2004). Model based diagnosis of the air path of an automotive diesel engine. Control Engineering Practice, 12(5), 513-525. doi:10.1016/s0967-0661(03)00120-5 es_ES
dc.description.references Macian, V., Lujan, J. M., Guardiola, C., & Yuste, P. (2006). DFT-based controller for fuel injection unevenness correction in turbocharged diesel engines. IEEE Transactions on Control Systems Technology, 14(5), 819-827. doi:10.1109/tcst.2006.876924 es_ES
dc.description.references Macián, V., Luján, J. M., Guardiola, C., & Perles, A. (2006). A comparison of different methods for fuel delivery unevenness detection in Diesel engines. Mechanical Systems and Signal Processing, 20(8), 2219-2231. doi:10.1016/j.ymssp.2005.04.001 es_ES
dc.description.references Payri, F., Luján, J. M., Guardiola, C., & Rizzoni, G. (2006). Injection diagnosis through common-rail pressure measurement. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(3), 347-357. doi:10.1243/09544070jauto34 es_ES
dc.description.references Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009 es_ES
dc.description.references Galindo, J., Climent, H., Guardiola, C., & Doménech, J. (2009). Strategies for improving the mode transition in a sequential parallel turbocharged automotive diesel engine. International Journal of Automotive Technology, 10(2), 141-149. doi:10.1007/s12239-009-0017-1 es_ES
dc.description.references Kalman, R. E., & Bucy, R. S. (1961). New Results in Linear Filtering and Prediction Theory. Journal of Basic Engineering, 83(1), 95-108. doi:10.1115/1.3658902 es_ES
dc.description.references Rajamani, M. R., & Rawlings, J. B. (2009). Estimation of the disturbance structure from data using semidefinite programming and optimal weighting. Automatica, 45(1), 142-148. doi:10.1016/j.automatica.2008.05.032 es_ES
dc.description.references Höckerdal, E., Frisk, E., & Eriksson, L. (2011). EKF-based adaptation of look-up tables with an air mass-flow sensor application. Control Engineering Practice, 19(5), 442-453. doi:10.1016/j.conengprac.2011.01.006 es_ES
dc.description.references Peyton Jones, J. C., & Muske, K. R. (2009). Identification and adaptation of linear look-up table parameters using an efficient recursive least-squares technique. ISA Transactions, 48(4), 476-483. doi:10.1016/j.isatra.2009.04.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem