- -

Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

Show full item record

Ricchiuti, AL.; Barrera Vilar, D.; Sales Maicas, S.; Thevenaz, L.; Capmany Francoy, J. (2013). Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques. Optics Express. 21(23):28175-28181. doi:10.1364/OE.21.028175

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52832

Files in this item

Item Metadata

Title: Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques
Author: Ricchiuti, Amelia Lavinia Barrera Vilar, David Sales Maicas, Salvador Thevenaz, Luc Capmany Francoy, José
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.21.028175
Publisher:
Optical Society of America
Publisher version: http://dx.doi.org/10.1364/OE.21.028175
Project ID:
Infraestructura FEDER UPVOV08-3E-008
...[+]
Infraestructura FEDER UPVOV08-3E-008
FEDER UPVOV10-3E-492
Spanish MCINN TEC2011-29120-C05-05
Spanish MCINN TEC2011-29120-C05-01
Valencia Government through the Ayuda Complementaria ACOMP/2013/146
European Commission through the COST Action TD1001 "OFSeSa"
Swiss National Science Foundation 200021-134546
Research Excellency Award Program GVA PROMETEO 2013/012
[-]
Thanks:
The authors wish to acknowledge the financial support of the Infraestructura FEDER UPVOV08-3E-008, FEDER UPVOV10-3E-492, the Spanish MCINN through the projects TEC2011-29120-C05-05 and TEC2011-29120-C05-01, the Valencia ...[+]
Type: Artículo

References

Culshaw, B. (2004). Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls. Journal of Lightwave Technology, 22(1), 39-50. doi:10.1109/jlt.2003.822139

Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377

Li, S. Y., Ngo, N. Q., Tjin, S. C., Shum, P., & Zhang, J. (2004). Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Optics Letters, 29(1), 29. doi:10.1364/ol.29.000029 [+]
Culshaw, B. (2004). Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls. Journal of Lightwave Technology, 22(1), 39-50. doi:10.1109/jlt.2003.822139

Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377

Li, S. Y., Ngo, N. Q., Tjin, S. C., Shum, P., & Zhang, J. (2004). Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Optics Letters, 29(1), 29. doi:10.1364/ol.29.000029

Uno, H., Kojima, A., Shibano, A., & Mikami, O. (1999). <title>Optical wavelength switch using strain-controlled fiber Bragg gratings</title>. Optical Engineering for Sensing and Nanotechnology (ICOSN ’99). doi:10.1117/12.347816

Azana, J., & Muriel, M. A. (2001). Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 728-744. doi:10.1109/2944.974245

Volanthen, M., Geiger, H., & Dakin, J. P. (1997). Distributed grating sensors using low-coherence reflectometry. Journal of Lightwave Technology, 15(11), 2076-2082. doi:10.1109/50.641525

Hotate, K., & Kajiwara, K. (2008). Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function. Optics Express, 16(11), 7881. doi:10.1364/oe.16.007881

Sancho, J., Chin, S., Barrera, D., Sales, S., & Thévenaz, L. (2013). Time-frequency analysis of long fiber Bragg gratings with low reflectivity. Optics Express, 21(6), 7171. doi:10.1364/oe.21.007171

Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819

Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348

Chen, L. R., Benjamin, S. D., Smith, P. W. E., & Sipe, J. E. (1997). Ultrashort pulse reflection from fiber gratings: a numerical investigation. Journal of Lightwave Technology, 15(8), 1503-1512. doi:10.1109/50.618383

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record