- -

Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ricchiuti, Amelia Lavinia es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Thevenaz, Luc es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2015-07-08T11:41:56Z
dc.date.available 2015-07-08T11:41:56Z
dc.date.issued 2013-11-18
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/52832
dc.description.abstract A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photodetector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes. es_ES
dc.description.sponsorship The authors wish to acknowledge the financial support of the Infraestructura FEDER UPVOV08-3E-008, FEDER UPVOV10-3E-492, the Spanish MCINN through the projects TEC2011-29120-C05-05 and TEC2011-29120-C05-01, the Valencia Government through the Ayuda Complementaria ACOMP/2013/146, European Commission through the COST Action TD1001 "OFSeSa" and the Swiss National Science Foundation through project 200021-134546 and the financial support given by the Research Excellency Award Program GVA PROMETEO 2013/012, Next generation Microwave Photonic technologies. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation European Commission through the COST Action TD1001 "OFSeSa" es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.21.028175
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//200021_134546/CH/All-optical control of the timing of light in fibres/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//TD1001/EU/Novel and Reliable Optical Fibre Sensor Systems for Future Security and Safety Applications (OFSeSa)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/ES/PUNTOS CUANTICOS SEMICONDUCTORES COMO CLAVE PARA FUTURAS TECNOLOGIAS: DE LA NANOFOTONICA A LA NANOPLASMONICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F146/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Ricchiuti, AL.; Barrera Vilar, D.; Sales Maicas, S.; Thevenaz, L.; Capmany Francoy, J. (2013). Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques. Optics Express. 21(23):28175-28181. https://doi.org/10.1364/OE.21.028175 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.21.028175 es_ES
dc.description.upvformatpinicio 28175 es_ES
dc.description.upvformatpfin 28181 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 23 es_ES
dc.relation.senia 254171
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Culshaw, B. (2004). Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls. Journal of Lightwave Technology, 22(1), 39-50. doi:10.1109/jlt.2003.822139 es_ES
dc.description.references Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377 es_ES
dc.description.references Li, S. Y., Ngo, N. Q., Tjin, S. C., Shum, P., & Zhang, J. (2004). Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Optics Letters, 29(1), 29. doi:10.1364/ol.29.000029 es_ES
dc.description.references Uno, H., Kojima, A., Shibano, A., & Mikami, O. (1999). <title>Optical wavelength switch using strain-controlled fiber Bragg gratings</title>. Optical Engineering for Sensing and Nanotechnology (ICOSN ’99). doi:10.1117/12.347816 es_ES
dc.description.references Azana, J., & Muriel, M. A. (2001). Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 728-744. doi:10.1109/2944.974245 es_ES
dc.description.references Volanthen, M., Geiger, H., & Dakin, J. P. (1997). Distributed grating sensors using low-coherence reflectometry. Journal of Lightwave Technology, 15(11), 2076-2082. doi:10.1109/50.641525 es_ES
dc.description.references Hotate, K., & Kajiwara, K. (2008). Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function. Optics Express, 16(11), 7881. doi:10.1364/oe.16.007881 es_ES
dc.description.references Sancho, J., Chin, S., Barrera, D., Sales, S., & Thévenaz, L. (2013). Time-frequency analysis of long fiber Bragg gratings with low reflectivity. Optics Express, 21(6), 7171. doi:10.1364/oe.21.007171 es_ES
dc.description.references Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819 es_ES
dc.description.references Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348 es_ES
dc.description.references Chen, L. R., Benjamin, S. D., Smith, P. W. E., & Sipe, J. E. (1997). Ultrashort pulse reflection from fiber gratings: a numerical investigation. Journal of Lightwave Technology, 15(8), 1503-1512. doi:10.1109/50.618383 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem