Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. (Eds.). (2014). Cavity Optomechanics. doi:10.1007/978-3-642-55312-7
Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., & Vahala, K. J. (2005). Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters, 95(3). doi:10.1103/physrevlett.95.033901
Hossein-Zadeh, M., Rokhsari, H., Hajimiri, A., & Vahala, K. J. (2006). Characterization of a radiation-pressure-driven micromechanical oscillator. Physical Review A, 74(2). doi:10.1103/physreva.74.023813
[+]
Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. (Eds.). (2014). Cavity Optomechanics. doi:10.1007/978-3-642-55312-7
Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., & Vahala, K. J. (2005). Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters, 95(3). doi:10.1103/physrevlett.95.033901
Hossein-Zadeh, M., Rokhsari, H., Hajimiri, A., & Vahala, K. J. (2006). Characterization of a radiation-pressure-driven micromechanical oscillator. Physical Review A, 74(2). doi:10.1103/physreva.74.023813
Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524
Pennec, Y., Laude, V., Papanikolaou, N., Djafari-Rouhani, B., Oudich, M., El Jallal, S., … Martínez, A. (2014). Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 3(6). doi:10.1515/nanoph-2014-0004
Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461
Safavi-Naeini, A. H., Alegre, T. P. M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., … Painter, O. (2011). Electromagnetically induced transparency and slow light with optomechanics. Nature, 472(7341), 69-73. doi:10.1038/nature09933
Pennec, Y., Rouhani, B. D., Li, C., Escalante, J. M., Martinez, A., Benchabane, S., … Papanikolaou, N. (2011). Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 1(4), 041901. doi:10.1063/1.3675799
Gomis-Bresco, J., Navarro-Urrios, D., Oudich, M., El-Jallal, S., Griol, A., Puerto, D., … Torres, C. M. S. (2014). A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 5(1). doi:10.1038/ncomms5452
Oudich, M., El-Jallal, S., Pennec, Y., Djafari-Rouhani, B., Gomis-Bresco, J., Navarro-Urrios, D., … Makhoute, A. (2014). Optomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 89(24). doi:10.1103/physrevb.89.245122
Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726
Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., Chan, J., Gröblacher, S., & Painter, O. (2014). Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity. Physical Review Letters, 112(15). doi:10.1103/physrevlett.112.153603
Johnson, S. G., Ibanescu, M., Skorobogatiy, M. A., Weisberg, O., Joannopoulos, J. D., & Fink, Y. (2002). Perturbation theory for Maxwell’s equations with shifting material boundaries. Physical Review E, 65(6). doi:10.1103/physreve.65.066611
Navarro-Urrios, D., Gomis-Bresco, J., Capuj, N. E., Alzina, F., Griol, A., Puerto, D., … Sotomayor-Torres, C. M. (2014). Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics, 116(9), 093506. doi:10.1063/1.4894623
Barclay, P. E., Srinivasan, K., & Painter, O. (2005). Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Optics Express, 13(3), 801. doi:10.1364/opex.13.000801
J. Chan, Ph.D. thesis, California Institute of Technology, Los Angeles, 2014.
Gorodetsky, M. L., Schliesser, A., Anetsberger, G., Deleglise, S., & Kippenberg, T. J. (2010). Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Optics Express, 18(22), 23236. doi:10.1364/oe.18.023236
[-]