Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro-Urrios, D. | es_ES |
dc.contributor.author | Gomis-Bresco, J. | es_ES |
dc.contributor.author | El-Jallal, S. | es_ES |
dc.contributor.author | Oudich, M. | es_ES |
dc.contributor.author | Pitanti, A. | es_ES |
dc.contributor.author | Capuj, N. | es_ES |
dc.contributor.author | Tredicucci, A. | es_ES |
dc.contributor.author | Alzina, F. | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Pennec, Y. | es_ES |
dc.contributor.author | Djafari-Rouhani, B. | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.contributor.author | Sotomayor Torres, C.M. | es_ES |
dc.date.accessioned | 2015-07-10T07:01:13Z | |
dc.date.available | 2015-07-10T07:01:13Z | |
dc.date.issued | 2014-12 | |
dc.identifier.issn | 2158-3226 | |
dc.identifier.uri | http://hdl.handle.net/10251/52966 | |
dc.description.abstract | [EN] We report on the optomechanical properties of a breathing mechanical mode oscillating at 5.5 GHz in a 1D corrugated Si nanobeam. This mode has an experimental single-particle optomechanical coupling rate of vertical bar g(o, OM)vertical bar= 1.8 MHz (vertical bar g(o, OM)vertical bar/2 pi=0.3 MHz) and shows strong dynamical back-action effects at room temperature. The geometrical flexibility of the unit-cell would lend itself to further engineering of the cavity region to localize the mode within the full phononic band-gap present at 4 GHz while keeping high go, OM values. This would lead to longer lifetimes at cryogenic temperatures, due to the suppression of acoustic leakage. | es_ES |
dc.description.sponsorship | This work was supported by the EU through the FP7 project TAILPHOX (ICT-FP7-233883) and the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish projects TAPHOR (MAT2012-31392). D.N-U and J.G-B acknowledge support in the form of postdoctoral fellowships from the Catalan (Beatriu de Pinos) and the Spanish (Juan de la Cierva) governments, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | AIP Advances | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Optomechanics | es_ES |
dc.subject | Back-action | |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4902171 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-31392/ES/DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/321122/EU/Sound-Light Manipulation in the Terahertz/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Navarro-Urrios, D.; Gomis-Bresco, J.; El-Jallal, S.; Oudich, M.; Pitanti, A.; Capuj, N.; Tredicucci, A.... (2014). Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam. AIP Advances. 4(12). https://doi.org/10.1063/1.4902171 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4902171 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 281706 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | European Research Council | |
dc.description.references | Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. (Eds.). (2014). Cavity Optomechanics. doi:10.1007/978-3-642-55312-7 | es_ES |
dc.description.references | Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., & Vahala, K. J. (2005). Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters, 95(3). doi:10.1103/physrevlett.95.033901 | es_ES |
dc.description.references | Hossein-Zadeh, M., Rokhsari, H., Hajimiri, A., & Vahala, K. J. (2006). Characterization of a radiation-pressure-driven micromechanical oscillator. Physical Review A, 74(2). doi:10.1103/physreva.74.023813 | es_ES |
dc.description.references | Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524 | es_ES |
dc.description.references | Pennec, Y., Laude, V., Papanikolaou, N., Djafari-Rouhani, B., Oudich, M., El Jallal, S., … Martínez, A. (2014). Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 3(6). doi:10.1515/nanoph-2014-0004 | es_ES |
dc.description.references | Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461 | es_ES |
dc.description.references | Safavi-Naeini, A. H., Alegre, T. P. M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., … Painter, O. (2011). Electromagnetically induced transparency and slow light with optomechanics. Nature, 472(7341), 69-73. doi:10.1038/nature09933 | es_ES |
dc.description.references | Pennec, Y., Rouhani, B. D., Li, C., Escalante, J. M., Martinez, A., Benchabane, S., … Papanikolaou, N. (2011). Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 1(4), 041901. doi:10.1063/1.3675799 | es_ES |
dc.description.references | Gomis-Bresco, J., Navarro-Urrios, D., Oudich, M., El-Jallal, S., Griol, A., Puerto, D., … Torres, C. M. S. (2014). A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 5(1). doi:10.1038/ncomms5452 | es_ES |
dc.description.references | Oudich, M., El-Jallal, S., Pennec, Y., Djafari-Rouhani, B., Gomis-Bresco, J., Navarro-Urrios, D., … Makhoute, A. (2014). Optomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 89(24). doi:10.1103/physrevb.89.245122 | es_ES |
dc.description.references | Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726 | es_ES |
dc.description.references | Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., Chan, J., Gröblacher, S., & Painter, O. (2014). Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity. Physical Review Letters, 112(15). doi:10.1103/physrevlett.112.153603 | es_ES |
dc.description.references | Johnson, S. G., Ibanescu, M., Skorobogatiy, M. A., Weisberg, O., Joannopoulos, J. D., & Fink, Y. (2002). Perturbation theory for Maxwell’s equations with shifting material boundaries. Physical Review E, 65(6). doi:10.1103/physreve.65.066611 | es_ES |
dc.description.references | Navarro-Urrios, D., Gomis-Bresco, J., Capuj, N. E., Alzina, F., Griol, A., Puerto, D., … Sotomayor-Torres, C. M. (2014). Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics, 116(9), 093506. doi:10.1063/1.4894623 | es_ES |
dc.description.references | Barclay, P. E., Srinivasan, K., & Painter, O. (2005). Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Optics Express, 13(3), 801. doi:10.1364/opex.13.000801 | es_ES |
dc.description.references | J. Chan, Ph.D. thesis, California Institute of Technology, Los Angeles, 2014. | es_ES |
dc.description.references | Gorodetsky, M. L., Schliesser, A., Anetsberger, G., Deleglise, S., & Kippenberg, T. J. (2010). Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Optics Express, 18(22), 23236. doi:10.1364/oe.18.023236 | es_ES |