- -

Gradient index lenses for flexural waves based on thickness variations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gradient index lenses for flexural waves based on thickness variations

Mostrar el registro completo del ítem

Climente Alarcón, A.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2014). Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters. 105(6). https://doi.org/10.1063/1.4893153

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52988

Ficheros en el ítem

Metadatos del ítem

Título: Gradient index lenses for flexural waves based on thickness variations
Autor: Climente Alarcón, Alfonso Torrent Martí, Daniel Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
This work presents a method for the realization of gradient index devices for flexural waves in thin plates. Unlike recent approaches based on phononic crystals, the present approach is based on the thickness-dependence ...[+]
Palabras clave: Flexural waves , Gradient index lens
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Physics Letters. (issn: 0003-6951 ) (eissn: 1077-3118 )
DOI: 10.1063/1.4893153
Editorial:
American Institute of Physics
Versión del editor: http://dx.doi.org/10.1063/1.4893153
Código del Proyecto:
info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/
Descripción: Copyright (2014) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in Applied Physics Letters 105, (6) and may be found at http://dx.doi.org/10.1063/1.4893153. Authors own version of final article on e-print servers
Agradecimientos:
This work has been supported by the U.S. Office of Naval Research under Grant No. N000140910554.
Tipo: Artículo

References

Norris, A. N., & Vemula, C. (1995). Scattering of flexural waves on thin plates. Journal of Sound and Vibration, 181(1), 115-125. doi:10.1006/jsvi.1995.0129

SQUIRE, V. A., & DIXON, T. W. (2000). SCATTERING OF FLEXURAL WAVES FROM A COATED CYLINDRICAL ANOMALY IN A THIN PLATE. Journal of Sound and Vibration, 236(2), 367-373. doi:10.1006/jsvi.2000.2953

Movchan, A. ., Movchan, N. ., & McPhedran, R. . (2007). Bloch–Floquet bending waves in perforated thin plates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2086), 2505-2518. doi:10.1098/rspa.2007.1886 [+]
Norris, A. N., & Vemula, C. (1995). Scattering of flexural waves on thin plates. Journal of Sound and Vibration, 181(1), 115-125. doi:10.1006/jsvi.1995.0129

SQUIRE, V. A., & DIXON, T. W. (2000). SCATTERING OF FLEXURAL WAVES FROM A COATED CYLINDRICAL ANOMALY IN A THIN PLATE. Journal of Sound and Vibration, 236(2), 367-373. doi:10.1006/jsvi.2000.2953

Movchan, A. ., Movchan, N. ., & McPhedran, R. . (2007). Bloch–Floquet bending waves in perforated thin plates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2086), 2505-2518. doi:10.1098/rspa.2007.1886

Lee, W.-M., & Chen, J.-T. (2010). Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method. International Journal of Solids and Structures, 47(9), 1118-1129. doi:10.1016/j.ijsolstr.2009.12.002

Parnell, W. J., & Martin, P. A. (2011). Multiple scattering of flexural waves by random configurations of inclusions in thin plates. Wave Motion, 48(2), 161-175. doi:10.1016/j.wavemoti.2010.10.004

McPhedran, R. C., Movchan, A. B., & Movchan, N. V. (2009). Platonic crystals: Bloch bands, neutrality and defects. Mechanics of Materials, 41(4), 356-363. doi:10.1016/j.mechmat.2009.01.005

Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303

Huang, C.-Y., Sun, J.-H., & Wu, T.-T. (2010). A two-port ZnO/silicon Lamb wave resonator using phononic crystals. Applied Physics Letters, 97(3), 031913. doi:10.1063/1.3467145

Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003

Wu, T.-T., Chen, Y.-T., Sun, J.-H., Lin, S.-C. S., & Huang, T. J. (2011). Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Applied Physics Letters, 98(17), 171911. doi:10.1063/1.3583660

Pierre, J., Boyko, O., Belliard, L., Vasseur, J. O., & Bonello, B. (2010). Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal. Applied Physics Letters, 97(12), 121919. doi:10.1063/1.3491290

Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813

Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106

Wang, C. H. (2003). Plate-Wave Diffraction Tomography for Structural Health Monitoring. AIP Conference Proceedings. doi:10.1063/1.1570323

Fromme, P., Wilcox, P. D., Lowe, M. J. S., & Cawley, P. (2006). On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 777-785. doi:10.1109/tuffc.2006.1621505

Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6), 1809-1819. doi:10.1121/1.385171

Krokhin, A. A., Arriaga, J., & Gumen, L. N. (2003). Speed of Sound in Periodic Elastic Composites. Physical Review Letters, 91(26). doi:10.1103/physrevlett.91.264302

Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302

Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301

Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010

O’Boy, D. J., Krylov, V. V., & Kralovic, V. (2010). Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. Journal of Sound and Vibration, 329(22), 4672-4688. doi:10.1016/j.jsv.2010.05.019

Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035

Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001

Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114(21), 214903. doi:10.1063/1.4839375

Šarbort, M., & Tyc, T. (2012). Spherical media and geodesic lenses in geometrical optics. Journal of Optics, 14(7), 075705. doi:10.1088/2040-8978/14/7/075705

Narimanov, E. E., & Kildishev, A. V. (2009). Optical black hole: Broadband omnidirectional light absorber. Applied Physics Letters, 95(4), 041106. doi:10.1063/1.3184594

Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem