Mostrar el registro sencillo del ítem
dc.contributor.author | Climente Alarcón, Alfonso | es_ES |
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-07-10T10:30:35Z | |
dc.date.available | 2015-07-10T10:30:35Z | |
dc.date.issued | 2014-08-11 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/52988 | |
dc.description | Copyright (2014) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in Applied Physics Letters 105, (6) and may be found at http://dx.doi.org/10.1063/1.4893153. Authors own version of final article on e-print servers | es_ES |
dc.description.abstract | This work presents a method for the realization of gradient index devices for flexural waves in thin plates. Unlike recent approaches based on phononic crystals, the present approach is based on the thickness-dependence of the dispersion relation of flexural waves, which is used to create gradient index devices by means of local variations of the plate's thickness. Numerical simulations of known circularly symmetrical gradient index lenses have been performed. These simulations have been done using the multilayer multiple scattering method and the results prove their broadband efficiency and omnidirectional properties. Finally, finite element simulations employing the full three-dimensional elasticity equations also support the validity of the designed approach. (c) 2014 AIP Publishing LLC. | es_ES |
dc.description.sponsorship | This work has been supported by the U.S. Office of Naval Research under Grant No. N000140910554. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Flexural waves | es_ES |
dc.subject | Gradient index lens | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Gradient index lenses for flexural waves based on thickness variations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4893153 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Climente Alarcón, A.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2014). Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters. 105(6). https://doi.org/10.1063/1.4893153 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4893153 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 105 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 277498 | |
dc.identifier.eissn | 1077-3118 | |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.description.references | Norris, A. N., & Vemula, C. (1995). Scattering of flexural waves on thin plates. Journal of Sound and Vibration, 181(1), 115-125. doi:10.1006/jsvi.1995.0129 | es_ES |
dc.description.references | SQUIRE, V. A., & DIXON, T. W. (2000). SCATTERING OF FLEXURAL WAVES FROM A COATED CYLINDRICAL ANOMALY IN A THIN PLATE. Journal of Sound and Vibration, 236(2), 367-373. doi:10.1006/jsvi.2000.2953 | es_ES |
dc.description.references | Movchan, A. ., Movchan, N. ., & McPhedran, R. . (2007). Bloch–Floquet bending waves in perforated thin plates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2086), 2505-2518. doi:10.1098/rspa.2007.1886 | es_ES |
dc.description.references | Lee, W.-M., & Chen, J.-T. (2010). Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method. International Journal of Solids and Structures, 47(9), 1118-1129. doi:10.1016/j.ijsolstr.2009.12.002 | es_ES |
dc.description.references | Parnell, W. J., & Martin, P. A. (2011). Multiple scattering of flexural waves by random configurations of inclusions in thin plates. Wave Motion, 48(2), 161-175. doi:10.1016/j.wavemoti.2010.10.004 | es_ES |
dc.description.references | McPhedran, R. C., Movchan, A. B., & Movchan, N. V. (2009). Platonic crystals: Bloch bands, neutrality and defects. Mechanics of Materials, 41(4), 356-363. doi:10.1016/j.mechmat.2009.01.005 | es_ES |
dc.description.references | Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303 | es_ES |
dc.description.references | Huang, C.-Y., Sun, J.-H., & Wu, T.-T. (2010). A two-port ZnO/silicon Lamb wave resonator using phononic crystals. Applied Physics Letters, 97(3), 031913. doi:10.1063/1.3467145 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003 | es_ES |
dc.description.references | Wu, T.-T., Chen, Y.-T., Sun, J.-H., Lin, S.-C. S., & Huang, T. J. (2011). Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Applied Physics Letters, 98(17), 171911. doi:10.1063/1.3583660 | es_ES |
dc.description.references | Pierre, J., Boyko, O., Belliard, L., Vasseur, J. O., & Bonello, B. (2010). Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal. Applied Physics Letters, 97(12), 121919. doi:10.1063/1.3491290 | es_ES |
dc.description.references | Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813 | es_ES |
dc.description.references | Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106 | es_ES |
dc.description.references | Wang, C. H. (2003). Plate-Wave Diffraction Tomography for Structural Health Monitoring. AIP Conference Proceedings. doi:10.1063/1.1570323 | es_ES |
dc.description.references | Fromme, P., Wilcox, P. D., Lowe, M. J. S., & Cawley, P. (2006). On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 777-785. doi:10.1109/tuffc.2006.1621505 | es_ES |
dc.description.references | Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6), 1809-1819. doi:10.1121/1.385171 | es_ES |
dc.description.references | Krokhin, A. A., Arriaga, J., & Gumen, L. N. (2003). Speed of Sound in Periodic Elastic Composites. Physical Review Letters, 91(26). doi:10.1103/physrevlett.91.264302 | es_ES |
dc.description.references | Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 | es_ES |
dc.description.references | Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 | es_ES |
dc.description.references | Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010 | es_ES |
dc.description.references | O’Boy, D. J., Krylov, V. V., & Kralovic, V. (2010). Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. Journal of Sound and Vibration, 329(22), 4672-4688. doi:10.1016/j.jsv.2010.05.019 | es_ES |
dc.description.references | Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035 | es_ES |
dc.description.references | Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001 | es_ES |
dc.description.references | Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114(21), 214903. doi:10.1063/1.4839375 | es_ES |
dc.description.references | Šarbort, M., & Tyc, T. (2012). Spherical media and geodesic lenses in geometrical optics. Journal of Optics, 14(7), 075705. doi:10.1088/2040-8978/14/7/075705 | es_ES |
dc.description.references | Narimanov, E. E., & Kildishev, A. V. (2009). Optical black hole: Broadband omnidirectional light absorber. Applied Physics Letters, 95(4), 041106. doi:10.1063/1.3184594 | es_ES |
dc.description.references | Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611 | es_ES |