- -

Gradient index lenses for flexural waves based on thickness variations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gradient index lenses for flexural waves based on thickness variations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Climente Alarcón, Alfonso es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-07-10T10:30:35Z
dc.date.available 2015-07-10T10:30:35Z
dc.date.issued 2014-08-11
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/52988
dc.description Copyright (2014) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in Applied Physics Letters 105, (6) and may be found at http://dx.doi.org/10.1063/1.4893153. Authors own version of final article on e-print servers es_ES
dc.description.abstract This work presents a method for the realization of gradient index devices for flexural waves in thin plates. Unlike recent approaches based on phononic crystals, the present approach is based on the thickness-dependence of the dispersion relation of flexural waves, which is used to create gradient index devices by means of local variations of the plate's thickness. Numerical simulations of known circularly symmetrical gradient index lenses have been performed. These simulations have been done using the multilayer multiple scattering method and the results prove their broadband efficiency and omnidirectional properties. Finally, finite element simulations employing the full three-dimensional elasticity equations also support the validity of the designed approach. (c) 2014 AIP Publishing LLC. es_ES
dc.description.sponsorship This work has been supported by the U.S. Office of Naval Research under Grant No. N000140910554. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Flexural waves es_ES
dc.subject Gradient index lens es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Gradient index lenses for flexural waves based on thickness variations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4893153
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Climente Alarcón, A.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2014). Gradient index lenses for flexural waves based on thickness variations. Applied Physics Letters. 105(6). https://doi.org/10.1063/1.4893153 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4893153 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 105 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 277498
dc.identifier.eissn 1077-3118
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Norris, A. N., & Vemula, C. (1995). Scattering of flexural waves on thin plates. Journal of Sound and Vibration, 181(1), 115-125. doi:10.1006/jsvi.1995.0129 es_ES
dc.description.references SQUIRE, V. A., & DIXON, T. W. (2000). SCATTERING OF FLEXURAL WAVES FROM A COATED CYLINDRICAL ANOMALY IN A THIN PLATE. Journal of Sound and Vibration, 236(2), 367-373. doi:10.1006/jsvi.2000.2953 es_ES
dc.description.references Movchan, A. ., Movchan, N. ., & McPhedran, R. . (2007). Bloch–Floquet bending waves in perforated thin plates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2086), 2505-2518. doi:10.1098/rspa.2007.1886 es_ES
dc.description.references Lee, W.-M., & Chen, J.-T. (2010). Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method. International Journal of Solids and Structures, 47(9), 1118-1129. doi:10.1016/j.ijsolstr.2009.12.002 es_ES
dc.description.references Parnell, W. J., & Martin, P. A. (2011). Multiple scattering of flexural waves by random configurations of inclusions in thin plates. Wave Motion, 48(2), 161-175. doi:10.1016/j.wavemoti.2010.10.004 es_ES
dc.description.references McPhedran, R. C., Movchan, A. B., & Movchan, N. V. (2009). Platonic crystals: Bloch bands, neutrality and defects. Mechanics of Materials, 41(4), 356-363. doi:10.1016/j.mechmat.2009.01.005 es_ES
dc.description.references Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303 es_ES
dc.description.references Huang, C.-Y., Sun, J.-H., & Wu, T.-T. (2010). A two-port ZnO/silicon Lamb wave resonator using phononic crystals. Applied Physics Letters, 97(3), 031913. doi:10.1063/1.3467145 es_ES
dc.description.references Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003 es_ES
dc.description.references Wu, T.-T., Chen, Y.-T., Sun, J.-H., Lin, S.-C. S., & Huang, T. J. (2011). Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Applied Physics Letters, 98(17), 171911. doi:10.1063/1.3583660 es_ES
dc.description.references Pierre, J., Boyko, O., Belliard, L., Vasseur, J. O., & Bonello, B. (2010). Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal. Applied Physics Letters, 97(12), 121919. doi:10.1063/1.3491290 es_ES
dc.description.references Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813 es_ES
dc.description.references Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106 es_ES
dc.description.references Wang, C. H. (2003). Plate-Wave Diffraction Tomography for Structural Health Monitoring. AIP Conference Proceedings. doi:10.1063/1.1570323 es_ES
dc.description.references Fromme, P., Wilcox, P. D., Lowe, M. J. S., & Cawley, P. (2006). On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 777-785. doi:10.1109/tuffc.2006.1621505 es_ES
dc.description.references Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6), 1809-1819. doi:10.1121/1.385171 es_ES
dc.description.references Krokhin, A. A., Arriaga, J., & Gumen, L. N. (2003). Speed of Sound in Periodic Elastic Composites. Physical Review Letters, 91(26). doi:10.1103/physrevlett.91.264302 es_ES
dc.description.references Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 es_ES
dc.description.references Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 es_ES
dc.description.references Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010 es_ES
dc.description.references O’Boy, D. J., Krylov, V. V., & Kralovic, V. (2010). Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. Journal of Sound and Vibration, 329(22), 4672-4688. doi:10.1016/j.jsv.2010.05.019 es_ES
dc.description.references Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035 es_ES
dc.description.references Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics, 114(21), 214903. doi:10.1063/1.4839375 es_ES
dc.description.references Šarbort, M., & Tyc, T. (2012). Spherical media and geodesic lenses in geometrical optics. Journal of Optics, 14(7), 075705. doi:10.1088/2040-8978/14/7/075705 es_ES
dc.description.references Narimanov, E. E., & Kildishev, A. V. (2009). Optical black hole: Broadband omnidirectional light absorber. Applied Physics Letters, 95(4), 041106. doi:10.1063/1.3184594 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem