- -

Soft computing methods for personnel selection based on the valuation of competences

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Soft computing methods for personnel selection based on the valuation of competences

Show full item record

Canós-Darós, L.; Casasús Estellés, T.; Liern, V.; Pérez, JC. (2014). Soft computing methods for personnel selection based on the valuation of competences. International Journal of Intelligent Systems. 29(12):1079-1099. https://doi.org/10.1002/int.21684

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/53341

Files in this item

Item Metadata

Title: Soft computing methods for personnel selection based on the valuation of competences
Author: Canós-Darós, Lourdes Casasús Estellés, Trinidad Liern, V. Pérez, Juan Carlos
UPV Unit: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Universitat Politècnica de València. Grupo de Investigación en Reingeniería, Organización, trabajo en Grupo y Logística Empresarial (ROGLE)
Issued date:
Abstract:
Personnel selection based on candidates competences is a difficult task due to the imprecise description of the applicants competences and to the existence of several experts simultaneously evaluating those attributes. ...[+]
Subjects: Valued fuzzy-sets , Aggregation operators , Similarity measure , Decision-making , Inclusion , Management , Algorithm , Distance , Entropy , Logic
Copyrigths: Cerrado
Source:
International Journal of Intelligent Systems. (issn: 0884-8173 ) (eissn: 1098-111X )
DOI: 10.1002/int.21684
Publisher:
Wiley-Blackwell
Publisher version: http://dx.doi.org/10.1002/int.21684
Project ID:
info:eu-repo/grantAgreement/MICINN//TIN2008-06872-C04-02/ES/SISTEMAS INTELIGENTES PARA TOMAR DECISIONES ECONOMICO-FINANCIERAS BAJO CONDICIONES DE INCERTIDUMBRE/
Thanks:
The authors would like to acknowledge Tomas Lara, human resources manager of Faurecia, for his collaboration in this research. They would also like to thank the Spanish Ministry of Science and Innovation (TIN2008-06872-C04-02) ...[+]
Type: Artículo

References

Canos, L., & Liern, V. (2004). Some fuzzy models for human resource management. International Journal of Technology, Policy and Management, 4(4), 291. doi:10.1504/ijtpm.2004.006613

Gil-Aluja, J. (1998). The Interactive Management of Human Resources in Uncertainty. Applied Optimization. doi:10.1007/978-1-4613-3329-6

Canós, L., & Liern, V. (2008). Soft computing-based aggregation methods for human resource management. European Journal of Operational Research, 189(3), 669-681. doi:10.1016/j.ejor.2006.01.054 [+]
Canos, L., & Liern, V. (2004). Some fuzzy models for human resource management. International Journal of Technology, Policy and Management, 4(4), 291. doi:10.1504/ijtpm.2004.006613

Gil-Aluja, J. (1998). The Interactive Management of Human Resources in Uncertainty. Applied Optimization. doi:10.1007/978-1-4613-3329-6

Canós, L., & Liern, V. (2008). Soft computing-based aggregation methods for human resource management. European Journal of Operational Research, 189(3), 669-681. doi:10.1016/j.ejor.2006.01.054

Chen, L.-S., & Cheng, C.-H. (2005). Selecting IS personnel use fuzzy GDSS based on metric distance method. European Journal of Operational Research, 160(3), 803-820. doi:10.1016/j.ejor.2003.07.003

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x

Goguen, J. A. (1969). The logic of inexact concepts. Synthese, 19(3-4), 325-373. doi:10.1007/bf00485654

Gupta, S., & Chakraborty, M. (1998). Job evaluation in fuzzy environment. Fuzzy Sets and Systems, 100(1-3), 71-76. doi:10.1016/s0165-0114(97)00047-x

Capaldo, G., & Zollo, G. (2001). Applying fuzzy logic to personnel assessment: a case study. Omega, 29(6), 585-597. doi:10.1016/s0305-0483(01)00047-0

Hayes, J., Rose‐Quirie, A., & Allinson, C. W. (2000). Senior managers’ perceptions of the competencies they require for effective performance: implications for training and development. Personnel Review, 29(1), 92-105. doi:10.1108/00483480010295835

Herrera, F., López, E., Mendaña, C., & Rodrı́guez, M. A. (2001). A linguistic decision model for personnel management solved with a linguistic biobjective genetic algorithm. Fuzzy Sets and Systems, 118(1), 47-64. doi:10.1016/s0165-0114(98)00373-x

Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 78(3), 305-316. doi:10.1016/0165-0114(96)84611-2

Bustince, H. (2000). Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets. International Journal of Approximate Reasoning, 23(3), 137-209. doi:10.1016/s0888-613x(99)00045-6

Liang, G.-S., & Wang, M.-J. J. (1994). Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research, 78(1), 22-33. doi:10.1016/0377-2217(94)90119-8

Fan, J., & Xie, W. (1999). Some notes on similarity measure and proximity measure. Fuzzy Sets and Systems, 101(3), 403-412. doi:10.1016/s0165-0114(97)00108-5

Zeng, W., & Guo, P. (2008). Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship. Information Sciences, 178(5), 1334-1342. doi:10.1016/j.ins.2007.10.007

Bosc, P., & Pivert, O. (2006). About approximate inclusion and its axiomatization. Fuzzy Sets and Systems, 157(11), 1438-1454. doi:10.1016/j.fss.2005.11.011

Chen, T.-Y. (2013). An interval-valued intuitionistic fuzzy LINMAP method with inclusion comparison possibilities and hybrid averaging operations for multiple criteria group decision making. Knowledge-Based Systems, 45, 134-146. doi:10.1016/j.knosys.2013.02.012

Filev, D., & Yager, R. R. (1998). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems, 94(2), 157-169. doi:10.1016/s0165-0114(96)00254-0

Sambuc R Functions Φ-flous. Aplication a l'aide au diagnostic en pathologie thyroïdienne PhD Thesis Université de Marseille France 1975

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068

Deschrijver, G., & Král’, P. (2007). On the cardinalities of interval-valued fuzzy sets. Fuzzy Sets and Systems, 158(15), 1728-1750. doi:10.1016/j.fss.2007.01.005

Ramík, J., & ímánek, J. (1985). Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets and Systems, 16(2), 123-138. doi:10.1016/s0165-0114(85)80013-0

Calvo, T., & Mesiar, R. (2003). Aggregation operators: ordering and bounds. Fuzzy Sets and Systems, 139(3), 685-697. doi:10.1016/s0165-0114(03)00051-4

Carlsson, C., & Fullér, R. (2002). Fuzzy Reasoning in Decision Making and Optimization. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1805-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record