Mostrar el registro sencillo del ítem
dc.contributor.author | Canós-Darós, Lourdes | es_ES |
dc.contributor.author | Casasús Estellés, Trinidad | es_ES |
dc.contributor.author | Liern, V. | es_ES |
dc.contributor.author | Pérez, Juan Carlos | es_ES |
dc.date.accessioned | 2015-07-16T15:40:42Z | |
dc.date.available | 2015-07-16T15:40:42Z | |
dc.date.issued | 2014-12 | |
dc.identifier.issn | 0884-8173 | |
dc.identifier.uri | http://hdl.handle.net/10251/53341 | |
dc.description.abstract | Personnel selection based on candidates competences is a difficult task due to the imprecise description of the applicants competences and to the existence of several experts simultaneously evaluating those attributes. In this context, fuzzy sets theory provides suitable tools for the attainment of the maximum possible information from imprecise data. In this work, personnel selection methods are proposed that rely on the definition of an ideal candidate. Aggregated fuzzy valuations of each candidate are obtained taking into account the individual valuations provided by the experts. Then, candidates are ranked based on their similarity with the ideal candidate. Three different scenarios are considered: the ideal candidate is explicitly known, the ideal candidate is implicitly known, or the ideal candidate cannot be defined by the firm. In the first case, similarity or inclusion indexes are used; in the second, the use of ordered weighted average operators allows us to simulate global valuations for the candidates. Finally, if there is not an ideal profile, it can be constructed from the competences valuations of the candidates. To illustrate the proposed methods, a real personnel selection example is presented and solved using a program called StaffDesigner, especially designed for this work. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge Tomas Lara, human resources manager of Faurecia, for his collaboration in this research. They would also like to thank the Spanish Ministry of Science and Innovation (TIN2008-06872-C04-02) for its financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | International Journal of Intelligent Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Valued fuzzy-sets | es_ES |
dc.subject | Aggregation operators | es_ES |
dc.subject | Similarity measure | es_ES |
dc.subject | Decision-making | es_ES |
dc.subject | Inclusion | es_ES |
dc.subject | Management | es_ES |
dc.subject | Algorithm | es_ES |
dc.subject | Distance | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | Logic | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Soft computing methods for personnel selection based on the valuation of competences | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/int.21684 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-06872-C04-02/ES/SISTEMAS INTELIGENTES PARA TOMAR DECISIONES ECONOMICO-FINANCIERAS BAJO CONDICIONES DE INCERTIDUMBRE/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Grupo de Investigación en Reingeniería, Organización, trabajo en Grupo y Logística Empresarial (ROGLE) | es_ES |
dc.description.bibliographicCitation | Canós-Darós, L.; Casasús Estellés, T.; Liern, V.; Pérez, JC. (2014). Soft computing methods for personnel selection based on the valuation of competences. International Journal of Intelligent Systems. 29(12):1079-1099. https://doi.org/10.1002/int.21684 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/int.21684 | es_ES |
dc.description.upvformatpinicio | 1079 | es_ES |
dc.description.upvformatpfin | 1099 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 285530 | |
dc.identifier.eissn | 1098-111X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Canos, L., & Liern, V. (2004). Some fuzzy models for human resource management. International Journal of Technology, Policy and Management, 4(4), 291. doi:10.1504/ijtpm.2004.006613 | es_ES |
dc.description.references | Gil-Aluja, J. (1998). The Interactive Management of Human Resources in Uncertainty. Applied Optimization. doi:10.1007/978-1-4613-3329-6 | es_ES |
dc.description.references | Canós, L., & Liern, V. (2008). Soft computing-based aggregation methods for human resource management. European Journal of Operational Research, 189(3), 669-681. doi:10.1016/j.ejor.2006.01.054 | es_ES |
dc.description.references | Chen, L.-S., & Cheng, C.-H. (2005). Selecting IS personnel use fuzzy GDSS based on metric distance method. European Journal of Operational Research, 160(3), 803-820. doi:10.1016/j.ejor.2003.07.003 | es_ES |
dc.description.references | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x | es_ES |
dc.description.references | Goguen, J. A. (1969). The logic of inexact concepts. Synthese, 19(3-4), 325-373. doi:10.1007/bf00485654 | es_ES |
dc.description.references | Gupta, S., & Chakraborty, M. (1998). Job evaluation in fuzzy environment. Fuzzy Sets and Systems, 100(1-3), 71-76. doi:10.1016/s0165-0114(97)00047-x | es_ES |
dc.description.references | Capaldo, G., & Zollo, G. (2001). Applying fuzzy logic to personnel assessment: a case study. Omega, 29(6), 585-597. doi:10.1016/s0305-0483(01)00047-0 | es_ES |
dc.description.references | Hayes, J., Rose‐Quirie, A., & Allinson, C. W. (2000). Senior managers’ perceptions of the competencies they require for effective performance: implications for training and development. Personnel Review, 29(1), 92-105. doi:10.1108/00483480010295835 | es_ES |
dc.description.references | Herrera, F., López, E., Mendaña, C., & Rodrı́guez, M. A. (2001). A linguistic decision model for personnel management solved with a linguistic biobjective genetic algorithm. Fuzzy Sets and Systems, 118(1), 47-64. doi:10.1016/s0165-0114(98)00373-x | es_ES |
dc.description.references | Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 78(3), 305-316. doi:10.1016/0165-0114(96)84611-2 | es_ES |
dc.description.references | Bustince, H. (2000). Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets. International Journal of Approximate Reasoning, 23(3), 137-209. doi:10.1016/s0888-613x(99)00045-6 | es_ES |
dc.description.references | Liang, G.-S., & Wang, M.-J. J. (1994). Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research, 78(1), 22-33. doi:10.1016/0377-2217(94)90119-8 | es_ES |
dc.description.references | Fan, J., & Xie, W. (1999). Some notes on similarity measure and proximity measure. Fuzzy Sets and Systems, 101(3), 403-412. doi:10.1016/s0165-0114(97)00108-5 | es_ES |
dc.description.references | Zeng, W., & Guo, P. (2008). Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship. Information Sciences, 178(5), 1334-1342. doi:10.1016/j.ins.2007.10.007 | es_ES |
dc.description.references | Bosc, P., & Pivert, O. (2006). About approximate inclusion and its axiomatization. Fuzzy Sets and Systems, 157(11), 1438-1454. doi:10.1016/j.fss.2005.11.011 | es_ES |
dc.description.references | Chen, T.-Y. (2013). An interval-valued intuitionistic fuzzy LINMAP method with inclusion comparison possibilities and hybrid averaging operations for multiple criteria group decision making. Knowledge-Based Systems, 45, 134-146. doi:10.1016/j.knosys.2013.02.012 | es_ES |
dc.description.references | Filev, D., & Yager, R. R. (1998). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems, 94(2), 157-169. doi:10.1016/s0165-0114(96)00254-0 | es_ES |
dc.description.references | Sambuc R Functions Φ-flous. Aplication a l'aide au diagnostic en pathologie thyroïdienne PhD Thesis Université de Marseille France 1975 | es_ES |
dc.description.references | Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068 | es_ES |
dc.description.references | Deschrijver, G., & Král’, P. (2007). On the cardinalities of interval-valued fuzzy sets. Fuzzy Sets and Systems, 158(15), 1728-1750. doi:10.1016/j.fss.2007.01.005 | es_ES |
dc.description.references | Ramík, J., & ímánek, J. (1985). Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets and Systems, 16(2), 123-138. doi:10.1016/s0165-0114(85)80013-0 | es_ES |
dc.description.references | Calvo, T., & Mesiar, R. (2003). Aggregation operators: ordering and bounds. Fuzzy Sets and Systems, 139(3), 685-697. doi:10.1016/s0165-0114(03)00051-4 | es_ES |
dc.description.references | Carlsson, C., & Fullér, R. (2002). Fuzzy Reasoning in Decision Making and Optimization. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1805-5 | es_ES |