- -

Soft computing methods for personnel selection based on the valuation of competences

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Soft computing methods for personnel selection based on the valuation of competences

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Canós-Darós, Lourdes es_ES
dc.contributor.author Casasús Estellés, Trinidad es_ES
dc.contributor.author Liern, V. es_ES
dc.contributor.author Pérez, Juan Carlos es_ES
dc.date.accessioned 2015-07-16T15:40:42Z
dc.date.available 2015-07-16T15:40:42Z
dc.date.issued 2014-12
dc.identifier.issn 0884-8173
dc.identifier.uri http://hdl.handle.net/10251/53341
dc.description.abstract Personnel selection based on candidates competences is a difficult task due to the imprecise description of the applicants competences and to the existence of several experts simultaneously evaluating those attributes. In this context, fuzzy sets theory provides suitable tools for the attainment of the maximum possible information from imprecise data. In this work, personnel selection methods are proposed that rely on the definition of an ideal candidate. Aggregated fuzzy valuations of each candidate are obtained taking into account the individual valuations provided by the experts. Then, candidates are ranked based on their similarity with the ideal candidate. Three different scenarios are considered: the ideal candidate is explicitly known, the ideal candidate is implicitly known, or the ideal candidate cannot be defined by the firm. In the first case, similarity or inclusion indexes are used; in the second, the use of ordered weighted average operators allows us to simulate global valuations for the candidates. Finally, if there is not an ideal profile, it can be constructed from the competences valuations of the candidates. To illustrate the proposed methods, a real personnel selection example is presented and solved using a program called StaffDesigner, especially designed for this work. es_ES
dc.description.sponsorship The authors would like to acknowledge Tomas Lara, human resources manager of Faurecia, for his collaboration in this research. They would also like to thank the Spanish Ministry of Science and Innovation (TIN2008-06872-C04-02) for its financial support. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof International Journal of Intelligent Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Valued fuzzy-sets es_ES
dc.subject Aggregation operators es_ES
dc.subject Similarity measure es_ES
dc.subject Decision-making es_ES
dc.subject Inclusion es_ES
dc.subject Management es_ES
dc.subject Algorithm es_ES
dc.subject Distance es_ES
dc.subject Entropy es_ES
dc.subject Logic es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Soft computing methods for personnel selection based on the valuation of competences es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/int.21684
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2008-06872-C04-02/ES/SISTEMAS INTELIGENTES PARA TOMAR DECISIONES ECONOMICO-FINANCIERAS BAJO CONDICIONES DE INCERTIDUMBRE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de Investigación en Reingeniería, Organización, trabajo en Grupo y Logística Empresarial (ROGLE) es_ES
dc.description.bibliographicCitation Canós-Darós, L.; Casasús Estellés, T.; Liern, V.; Pérez, JC. (2014). Soft computing methods for personnel selection based on the valuation of competences. International Journal of Intelligent Systems. 29(12):1079-1099. https://doi.org/10.1002/int.21684 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/int.21684 es_ES
dc.description.upvformatpinicio 1079 es_ES
dc.description.upvformatpfin 1099 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 285530
dc.identifier.eissn 1098-111X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Canos, L., & Liern, V. (2004). Some fuzzy models for human resource management. International Journal of Technology, Policy and Management, 4(4), 291. doi:10.1504/ijtpm.2004.006613 es_ES
dc.description.references Gil-Aluja, J. (1998). The Interactive Management of Human Resources in Uncertainty. Applied Optimization. doi:10.1007/978-1-4613-3329-6 es_ES
dc.description.references Canós, L., & Liern, V. (2008). Soft computing-based aggregation methods for human resource management. European Journal of Operational Research, 189(3), 669-681. doi:10.1016/j.ejor.2006.01.054 es_ES
dc.description.references Chen, L.-S., & Cheng, C.-H. (2005). Selecting IS personnel use fuzzy GDSS based on metric distance method. European Journal of Operational Research, 160(3), 803-820. doi:10.1016/j.ejor.2003.07.003 es_ES
dc.description.references Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x es_ES
dc.description.references Goguen, J. A. (1969). The logic of inexact concepts. Synthese, 19(3-4), 325-373. doi:10.1007/bf00485654 es_ES
dc.description.references Gupta, S., & Chakraborty, M. (1998). Job evaluation in fuzzy environment. Fuzzy Sets and Systems, 100(1-3), 71-76. doi:10.1016/s0165-0114(97)00047-x es_ES
dc.description.references Capaldo, G., & Zollo, G. (2001). Applying fuzzy logic to personnel assessment: a case study. Omega, 29(6), 585-597. doi:10.1016/s0305-0483(01)00047-0 es_ES
dc.description.references Hayes, J., Rose‐Quirie, A., & Allinson, C. W. (2000). Senior managers’ perceptions of the competencies they require for effective performance: implications for training and development. Personnel Review, 29(1), 92-105. doi:10.1108/00483480010295835 es_ES
dc.description.references Herrera, F., López, E., Mendaña, C., & Rodrı́guez, M. A. (2001). A linguistic decision model for personnel management solved with a linguistic biobjective genetic algorithm. Fuzzy Sets and Systems, 118(1), 47-64. doi:10.1016/s0165-0114(98)00373-x es_ES
dc.description.references Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 78(3), 305-316. doi:10.1016/0165-0114(96)84611-2 es_ES
dc.description.references Bustince, H. (2000). Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets. International Journal of Approximate Reasoning, 23(3), 137-209. doi:10.1016/s0888-613x(99)00045-6 es_ES
dc.description.references Liang, G.-S., & Wang, M.-J. J. (1994). Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research, 78(1), 22-33. doi:10.1016/0377-2217(94)90119-8 es_ES
dc.description.references Fan, J., & Xie, W. (1999). Some notes on similarity measure and proximity measure. Fuzzy Sets and Systems, 101(3), 403-412. doi:10.1016/s0165-0114(97)00108-5 es_ES
dc.description.references Zeng, W., & Guo, P. (2008). Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship. Information Sciences, 178(5), 1334-1342. doi:10.1016/j.ins.2007.10.007 es_ES
dc.description.references Bosc, P., & Pivert, O. (2006). About approximate inclusion and its axiomatization. Fuzzy Sets and Systems, 157(11), 1438-1454. doi:10.1016/j.fss.2005.11.011 es_ES
dc.description.references Chen, T.-Y. (2013). An interval-valued intuitionistic fuzzy LINMAP method with inclusion comparison possibilities and hybrid averaging operations for multiple criteria group decision making. Knowledge-Based Systems, 45, 134-146. doi:10.1016/j.knosys.2013.02.012 es_ES
dc.description.references Filev, D., & Yager, R. R. (1998). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems, 94(2), 157-169. doi:10.1016/s0165-0114(96)00254-0 es_ES
dc.description.references Sambuc R Functions Φ-flous. Aplication a l'aide au diagnostic en pathologie thyroïdienne PhD Thesis Université de Marseille France 1975 es_ES
dc.description.references Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068 es_ES
dc.description.references Deschrijver, G., & Král’, P. (2007). On the cardinalities of interval-valued fuzzy sets. Fuzzy Sets and Systems, 158(15), 1728-1750. doi:10.1016/j.fss.2007.01.005 es_ES
dc.description.references Ramík, J., & ímánek, J. (1985). Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets and Systems, 16(2), 123-138. doi:10.1016/s0165-0114(85)80013-0 es_ES
dc.description.references Calvo, T., & Mesiar, R. (2003). Aggregation operators: ordering and bounds. Fuzzy Sets and Systems, 139(3), 685-697. doi:10.1016/s0165-0114(03)00051-4 es_ES
dc.description.references Carlsson, C., & Fullér, R. (2002). Fuzzy Reasoning in Decision Making and Optimization. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1805-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem