- -

ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*

Mostrar el registro completo del ítem

Domenech Carbo, A.; Domenech Carbo, MT.; Peiró Ronda, MA.; Osete Cortina, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*. Archaeometry. 53(6):1193-1211. https://doi.org/10.1111/j.1475-4754.2011.00608.x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/53374

Ficheros en el ítem

Metadatos del ítem

Título: ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*
Autor: Domenech Carbo, Antonio Domenech Carbo, Mª Teresa Peiró Ronda, María Amparo Osete Cortina, Laura
Entidad UPV: Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals
Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni
Fecha difusión:
Resumen:
An essentially non-invasive electrochemical methodology addressed to the authentication of archaeological lead is described. The method is based on the record of the voltammetric response of nanosamples ...[+]
Palabras clave: ARCHAEOLOGICAL LEAD , VOLTAMMETRY OF MICROPARTICLES , AUTHENTICATION , CORROSION PRODUCTS , Electron Microscopy Service of the UPV
Derechos de uso: Cerrado
Fuente:
Archaeometry. (issn: 0003-813X ) (eissn: 1475-4754 )
DOI: 10.1111/j.1475-4754.2011.00608.x
Editorial:
Wiley: 24 months
Versión del editor: http://dx.doi.org/10.1111/j.1475-4754.2011.00608.x
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2008-06727-C03-01/ES/DESARROLLO DE NUEVOS METODOS DE CONTROL DE TRATAMIENTOS DE LIMPIEZA DE OBRA PICTORICA MEDIANTE ENSAYOS MECANICOS, SEM, AFM, PY-GC-MS, HPLC-EXCLUSION, ESPECTROSCOPIA FTIR Y UV-VIS/
Agradecimientos:
The authors wish to thank the Museu de Prehistoria de Valencia, Museu Arqueologic de Borriana and Museu Municipal de Montcada for the access to their archives and funds. Financial support is gratefully acknowledged from ...[+]
Tipo: Artículo

References

Adeloju, S. B., Young, T. M., Jagner, D., & Batley, G. E. (1998). Anodic stripping potentiometric determination of antimony on a combined electrode. The Analyst, 123(9), 1871-1874. doi:10.1039/a803408g

Baron, S., Le-Carlier, C., Carignan, J., & Ploquin, A. (2009). Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes. Applied Geochemistry, 24(11), 2093-2101. doi:10.1016/j.apgeochem.2009.08.003

Bartlett, P. N., Dunford, T., & Ghanem, M. A. (2002). Templated electrochemical deposition of nanostructured macroporous PbO2. Journal of Materials Chemistry, 12(10), 3130-3135. doi:10.1039/b205306c [+]
Adeloju, S. B., Young, T. M., Jagner, D., & Batley, G. E. (1998). Anodic stripping potentiometric determination of antimony on a combined electrode. The Analyst, 123(9), 1871-1874. doi:10.1039/a803408g

Baron, S., Le-Carlier, C., Carignan, J., & Ploquin, A. (2009). Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes. Applied Geochemistry, 24(11), 2093-2101. doi:10.1016/j.apgeochem.2009.08.003

Bartlett, P. N., Dunford, T., & Ghanem, M. A. (2002). Templated electrochemical deposition of nanostructured macroporous PbO2. Journal of Materials Chemistry, 12(10), 3130-3135. doi:10.1039/b205306c

Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317

Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2

Martínez-Cortizas, A., Pontevedra-Pombal, X., Muñoz v, J. C. N., & García-Rodeja, E. (1997). Water, Air, and Soil Pollution, 100(3/4), 387-403. doi:10.1023/a:1018312223189

Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8

Dai, X., Nekrassova, O., Hyde, M. E., & Compton, R. G. (2004). Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle-Modified Electrodes. Analytical Chemistry, 76(19), 5924-5929. doi:10.1021/ac049232x

Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6

Doménech-Carbó, A., & Doménech-Carbó, M. T. (2005). Electrochemical Characterization of Archaeological Tin-Opacified Lead-Alkali Glazes and Their Corrosion Processes. Electroanalysis, 17(21), 1959-1969. doi:10.1002/elan.200503322

Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3

Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333

Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3

Doménech-Carbó, A., Doménech-Carbó, M. T., & Mas-Barberá, X. (2007). Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta, 71(4), 1569-1579. doi:10.1016/j.talanta.2006.07.053

Fletcher , D. 1967 Orleyl III. Plomo ibérico escrito precedente de la Vall d'Uixó Archivo Español de Arqueología 51 9

Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1

Huiliang, H., Jagner, D., & Renman, L. (1988). Flow potentiometric and constant-current stripping analysis for silver(I) with carbon- and platinum-fibre electrodes. Analytica Chimica Acta, 207, 27-35. doi:10.1016/s0003-2670(00)80779-5

Ward Jones, S. E., Zheng, S. H., Jeffrey, C. A., Seretis, S., Morin, S., & Compton, R. G. (2008). Stripping voltammetry of bismuth at Au(111): Mathematical modelling and numerical simulation. Journal of Electroanalytical Chemistry, 616(1-2), 38-44. doi:10.1016/j.jelechem.2008.01.003

Kuleff, I., Iliev, I., Pernicka, E., & Gergova, D. (2006). Chemical and lead isotope compositions of lead artefacts from ancient Thracia (Bulgaria). Journal of Cultural Heritage, 7(4), 244-256. doi:10.1016/j.culher.2006.04.003

Martínez-Lázaro, I., Doménech-Carbó, A., Doménech-Carbó, M. T., Pastor-Valls, M. T., & Amigó-Borrás, V. (2009). Electrochemical criteria for evaluating conservative treatments applied to contemporary metallic sculpture. A case study. Journal of Solid State Electrochemistry, 14(3), 437-447. doi:10.1007/s10008-009-0908-0

Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m

Pavlov, D. (1968). Processes of formation of divalent lead oxide compounds on anodic oxidation of lead in sulphuric acid. Electrochimica Acta, 13(10), 2051-2061. doi:10.1016/0013-4686(68)80115-x

Pavlov, D. (1981). Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 118, 167-185. doi:10.1016/s0022-0728(81)80539-6

Pavlov, D., & Monakhov, B. (1987). Effect of Sb on the electrochemical properties of Pb/PbSO4/H2SO4 and Pb/PbO/PbSO4/H2SO4 electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 218(1-2), 135-153. doi:10.1016/0022-0728(87)87012-2

Pavlov, D. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead-Acid Battery Positive Plate (Sn-Free Effect). Journal of The Electrochemical Society, 136(1), 27. doi:10.1149/1.2096603

Pavlov, D., & Popova, R. (1970). Mechanism of passivation processes of the lead sulphate electrode. Electrochimica Acta, 15(9), 1483-1491. doi:10.1016/0013-4686(70)80069-x

Laitinen, T., Monahov, B., Salmi, K., & Sundholm, G. (1991). Ring-disk electrode studies of soluble intermediates formed during the polarization of Pb in H2SO4. Electrochimica Acta, 36(5-6), 953-963. doi:10.1016/0013-4686(91)85300-v

Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037

Scholz, F., Nitschke, L., & Henrion, G. (1989). A new procedure for fast electrochemical analysis of solid materials. Naturwissenschaften, 76(2), 71-72. doi:10.1007/bf00396709

Scholz, F., Nitschke, L., Henrion, G., & Damaschun, F. (1989). A technique to study the electrochemistry of minerals. Naturwissenschaften, 76(4), 167-168. doi:10.1007/bf00366398

Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050

Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719

WYTTENBACH, A., & SCHUBIGER, P. A. (1973). TRACE ELEMENT CONTENT OF ROMAN LEAD BY NEUTRON ACTIVATION ANALYSIS. Archaeometry, 15(2), 199-207. doi:10.1111/j.1475-4754.1973.tb00090.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem