Mostrar el registro sencillo del ítem
dc.contributor.author | Domenech Carbo, Antonio | es_ES |
dc.contributor.author | Domenech Carbo, Mª Teresa | es_ES |
dc.contributor.author | Peiró Ronda, María Amparo | es_ES |
dc.contributor.author | Osete Cortina, Laura | es_ES |
dc.date.accessioned | 2015-07-17T07:54:14Z | |
dc.date.available | 2015-07-17T07:54:14Z | |
dc.date.issued | 2011-05 | |
dc.identifier.issn | 0003-813X | |
dc.identifier.uri | http://hdl.handle.net/10251/53374 | |
dc.description.abstract | An essentially non-invasive electrochemical methodology addressed to the authentication of archaeological lead is described. The method is based on the record of the voltammetric response of nanosamples from the archaeological artefact mechanically transferred to a graphite ‘pencil’ electrode in contact with aqueous buffers. Three diagnostic criteria for authentication are described based on the appearance of: (i) oxidative dissolution signals for trace metals like copper, arsenic, antimony and, often, tin and silver accompanying stripping peaks for lead, (ii) peak potential shifts for reduction peaks for patination products, and (iii) the presence of reduction peaks for PbO2. The method is applied to the authentication of an Iberian lead plate from the Tossal de Sant Miquel (Llíria, Spain) site using a series of genuine and false pieces from different provenances in the Valencian region (Spain). | es_ES |
dc.description.sponsorship | The authors wish to thank the Museu de Prehistoria de Valencia, Museu Arqueologic de Borriana and Museu Municipal de Montcada for the access to their archives and funds. Financial support is gratefully acknowledged from the Spanish 'I+D+I MICINN' project CTQ2008-06727-C03-01 and 02/BQU, supported by ERDEF funds. The authors wish to thank Mr Manuel Planes i Insausti and Dr Jose Luis Moya Lopez, the technical supervisors responsible for the UPV Electron Microscopy Service. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 24 months | es_ES |
dc.relation.ispartof | Archaeometry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ARCHAEOLOGICAL LEAD | es_ES |
dc.subject | VOLTAMMETRY OF MICROPARTICLES | es_ES |
dc.subject | AUTHENTICATION | es_ES |
dc.subject | CORROSION PRODUCTS | es_ES |
dc.subject | Electron Microscopy Service of the UPV | es_ES |
dc.subject.classification | PINTURA | es_ES |
dc.title | ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE* | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1475-4754.2011.00608.x | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2008-06727-C03-01/ES/DESARROLLO DE NUEVOS METODOS DE CONTROL DE TRATAMIENTOS DE LIMPIEZA DE OBRA PICTORICA MEDIANTE ENSAYOS MECANICOS, SEM, AFM, PY-GC-MS, HPLC-EXCLUSION, ESPECTROSCOPIA FTIR Y UV-VIS/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni | es_ES |
dc.description.bibliographicCitation | Domenech Carbo, A.; Domenech Carbo, MT.; Peiró Ronda, MA.; Osete Cortina, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*. Archaeometry. 53(6):1193-1211. https://doi.org/10.1111/j.1475-4754.2011.00608.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/j.1475-4754.2011.00608.x | es_ES |
dc.description.upvformatpinicio | 1193 | es_ES |
dc.description.upvformatpfin | 1211 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 214654 | |
dc.identifier.eissn | 1475-4754 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | Adeloju, S. B., Young, T. M., Jagner, D., & Batley, G. E. (1998). Anodic stripping potentiometric determination of antimony on a combined electrode. The Analyst, 123(9), 1871-1874. doi:10.1039/a803408g | es_ES |
dc.description.references | Baron, S., Le-Carlier, C., Carignan, J., & Ploquin, A. (2009). Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes. Applied Geochemistry, 24(11), 2093-2101. doi:10.1016/j.apgeochem.2009.08.003 | es_ES |
dc.description.references | Bartlett, P. N., Dunford, T., & Ghanem, M. A. (2002). Templated electrochemical deposition of nanostructured macroporous PbO2. Journal of Materials Chemistry, 12(10), 3130-3135. doi:10.1039/b205306c | es_ES |
dc.description.references | Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317 | es_ES |
dc.description.references | Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2 | es_ES |
dc.description.references | Martínez-Cortizas, A., Pontevedra-Pombal, X., Muñoz v, J. C. N., & García-Rodeja, E. (1997). Water, Air, and Soil Pollution, 100(3/4), 387-403. doi:10.1023/a:1018312223189 | es_ES |
dc.description.references | Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 | es_ES |
dc.description.references | Dai, X., Nekrassova, O., Hyde, M. E., & Compton, R. G. (2004). Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle-Modified Electrodes. Analytical Chemistry, 76(19), 5924-5929. doi:10.1021/ac049232x | es_ES |
dc.description.references | Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6 | es_ES |
dc.description.references | Doménech-Carbó, A., & Doménech-Carbó, M. T. (2005). Electrochemical Characterization of Archaeological Tin-Opacified Lead-Alkali Glazes and Their Corrosion Processes. Electroanalysis, 17(21), 1959-1969. doi:10.1002/elan.200503322 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3 | es_ES |
dc.description.references | Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., & Mas-Barberá, X. (2007). Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta, 71(4), 1569-1579. doi:10.1016/j.talanta.2006.07.053 | es_ES |
dc.description.references | Fletcher , D. 1967 Orleyl III. Plomo ibérico escrito precedente de la Vall d'Uixó Archivo Español de Arqueología 51 9 | es_ES |
dc.description.references | Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1 | es_ES |
dc.description.references | Huiliang, H., Jagner, D., & Renman, L. (1988). Flow potentiometric and constant-current stripping analysis for silver(I) with carbon- and platinum-fibre electrodes. Analytica Chimica Acta, 207, 27-35. doi:10.1016/s0003-2670(00)80779-5 | es_ES |
dc.description.references | Ward Jones, S. E., Zheng, S. H., Jeffrey, C. A., Seretis, S., Morin, S., & Compton, R. G. (2008). Stripping voltammetry of bismuth at Au(111): Mathematical modelling and numerical simulation. Journal of Electroanalytical Chemistry, 616(1-2), 38-44. doi:10.1016/j.jelechem.2008.01.003 | es_ES |
dc.description.references | Kuleff, I., Iliev, I., Pernicka, E., & Gergova, D. (2006). Chemical and lead isotope compositions of lead artefacts from ancient Thracia (Bulgaria). Journal of Cultural Heritage, 7(4), 244-256. doi:10.1016/j.culher.2006.04.003 | es_ES |
dc.description.references | Martínez-Lázaro, I., Doménech-Carbó, A., Doménech-Carbó, M. T., Pastor-Valls, M. T., & Amigó-Borrás, V. (2009). Electrochemical criteria for evaluating conservative treatments applied to contemporary metallic sculpture. A case study. Journal of Solid State Electrochemistry, 14(3), 437-447. doi:10.1007/s10008-009-0908-0 | es_ES |
dc.description.references | Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m | es_ES |
dc.description.references | Pavlov, D. (1968). Processes of formation of divalent lead oxide compounds on anodic oxidation of lead in sulphuric acid. Electrochimica Acta, 13(10), 2051-2061. doi:10.1016/0013-4686(68)80115-x | es_ES |
dc.description.references | Pavlov, D. (1981). Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 118, 167-185. doi:10.1016/s0022-0728(81)80539-6 | es_ES |
dc.description.references | Pavlov, D., & Monakhov, B. (1987). Effect of Sb on the electrochemical properties of Pb/PbSO4/H2SO4 and Pb/PbO/PbSO4/H2SO4 electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 218(1-2), 135-153. doi:10.1016/0022-0728(87)87012-2 | es_ES |
dc.description.references | Pavlov, D. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead-Acid Battery Positive Plate (Sn-Free Effect). Journal of The Electrochemical Society, 136(1), 27. doi:10.1149/1.2096603 | es_ES |
dc.description.references | Pavlov, D., & Popova, R. (1970). Mechanism of passivation processes of the lead sulphate electrode. Electrochimica Acta, 15(9), 1483-1491. doi:10.1016/0013-4686(70)80069-x | es_ES |
dc.description.references | Laitinen, T., Monahov, B., Salmi, K., & Sundholm, G. (1991). Ring-disk electrode studies of soluble intermediates formed during the polarization of Pb in H2SO4. Electrochimica Acta, 36(5-6), 953-963. doi:10.1016/0013-4686(91)85300-v | es_ES |
dc.description.references | Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 | es_ES |
dc.description.references | Scholz, F., Nitschke, L., & Henrion, G. (1989). A new procedure for fast electrochemical analysis of solid materials. Naturwissenschaften, 76(2), 71-72. doi:10.1007/bf00396709 | es_ES |
dc.description.references | Scholz, F., Nitschke, L., Henrion, G., & Damaschun, F. (1989). A technique to study the electrochemistry of minerals. Naturwissenschaften, 76(4), 167-168. doi:10.1007/bf00366398 | es_ES |
dc.description.references | Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 | es_ES |
dc.description.references | Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719 | es_ES |
dc.description.references | WYTTENBACH, A., & SCHUBIGER, P. A. (1973). TRACE ELEMENT CONTENT OF ROMAN LEAD BY NEUTRON ACTIVATION ANALYSIS. Archaeometry, 15(2), 199-207. doi:10.1111/j.1475-4754.1973.tb00090.x | es_ES |