- -

ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domenech Carbo, Antonio es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Peiró Ronda, María Amparo es_ES
dc.contributor.author Osete Cortina, Laura es_ES
dc.date.accessioned 2015-07-17T07:54:14Z
dc.date.available 2015-07-17T07:54:14Z
dc.date.issued 2011-05
dc.identifier.issn 0003-813X
dc.identifier.uri http://hdl.handle.net/10251/53374
dc.description.abstract An essentially non-invasive electrochemical methodology addressed to the authentication of archaeological lead is described. The method is based on the record of the voltammetric response of nanosamples from the archaeological artefact mechanically transferred to a graphite ‘pencil’ electrode in contact with aqueous buffers. Three diagnostic criteria for authentication are described based on the appearance of: (i) oxidative dissolution signals for trace metals like copper, arsenic, antimony and, often, tin and silver accompanying stripping peaks for lead, (ii) peak potential shifts for reduction peaks for patination products, and (iii) the presence of reduction peaks for PbO2. The method is applied to the authentication of an Iberian lead plate from the Tossal de Sant Miquel (Llíria, Spain) site using a series of genuine and false pieces from different provenances in the Valencian region (Spain). es_ES
dc.description.sponsorship The authors wish to thank the Museu de Prehistoria de Valencia, Museu Arqueologic de Borriana and Museu Municipal de Montcada for the access to their archives and funds. Financial support is gratefully acknowledged from the Spanish 'I+D+I MICINN' project CTQ2008-06727-C03-01 and 02/BQU, supported by ERDEF funds. The authors wish to thank Mr Manuel Planes i Insausti and Dr Jose Luis Moya Lopez, the technical supervisors responsible for the UPV Electron Microscopy Service. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 24 months es_ES
dc.relation.ispartof Archaeometry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ARCHAEOLOGICAL LEAD es_ES
dc.subject VOLTAMMETRY OF MICROPARTICLES es_ES
dc.subject AUTHENTICATION es_ES
dc.subject CORROSION PRODUCTS es_ES
dc.subject Electron Microscopy Service of the UPV es_ES
dc.subject.classification PINTURA es_ES
dc.title ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE* es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1475-4754.2011.00608.x
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2008-06727-C03-01/ES/DESARROLLO DE NUEVOS METODOS DE CONTROL DE TRATAMIENTOS DE LIMPIEZA DE OBRA PICTORICA MEDIANTE ENSAYOS MECANICOS, SEM, AFM, PY-GC-MS, HPLC-EXCLUSION, ESPECTROSCOPIA FTIR Y UV-VIS/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni es_ES
dc.description.bibliographicCitation Domenech Carbo, A.; Domenech Carbo, MT.; Peiró Ronda, MA.; Osete Cortina, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE*. Archaeometry. 53(6):1193-1211. https://doi.org/10.1111/j.1475-4754.2011.00608.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/j.1475-4754.2011.00608.x es_ES
dc.description.upvformatpinicio 1193 es_ES
dc.description.upvformatpfin 1211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 214654
dc.identifier.eissn 1475-4754
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Regional Development Fund
dc.description.references Adeloju, S. B., Young, T. M., Jagner, D., & Batley, G. E. (1998). Anodic stripping potentiometric determination of antimony on a combined electrode. The Analyst, 123(9), 1871-1874. doi:10.1039/a803408g es_ES
dc.description.references Baron, S., Le-Carlier, C., Carignan, J., & Ploquin, A. (2009). Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes. Applied Geochemistry, 24(11), 2093-2101. doi:10.1016/j.apgeochem.2009.08.003 es_ES
dc.description.references Bartlett, P. N., Dunford, T., & Ghanem, M. A. (2002). Templated electrochemical deposition of nanostructured macroporous PbO2. Journal of Materials Chemistry, 12(10), 3130-3135. doi:10.1039/b205306c es_ES
dc.description.references Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317 es_ES
dc.description.references Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2 es_ES
dc.description.references Martínez-Cortizas, A., Pontevedra-Pombal, X., Muñoz v, J. C. N., & García-Rodeja, E. (1997). Water, Air, and Soil Pollution, 100(3/4), 387-403. doi:10.1023/a:1018312223189 es_ES
dc.description.references Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 es_ES
dc.description.references Dai, X., Nekrassova, O., Hyde, M. E., & Compton, R. G. (2004). Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle-Modified Electrodes. Analytical Chemistry, 76(19), 5924-5929. doi:10.1021/ac049232x es_ES
dc.description.references Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6 es_ES
dc.description.references Doménech-Carbó, A., & Doménech-Carbó, M. T. (2005). Electrochemical Characterization of Archaeological Tin-Opacified Lead-Alkali Glazes and Their Corrosion Processes. Electroanalysis, 17(21), 1959-1969. doi:10.1002/elan.200503322 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3 es_ES
dc.description.references Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Mas-Barberá, X. (2007). Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta, 71(4), 1569-1579. doi:10.1016/j.talanta.2006.07.053 es_ES
dc.description.references Fletcher , D. 1967 Orleyl III. Plomo ibérico escrito precedente de la Vall d'Uixó Archivo Español de Arqueología 51 9 es_ES
dc.description.references Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1 es_ES
dc.description.references Huiliang, H., Jagner, D., & Renman, L. (1988). Flow potentiometric and constant-current stripping analysis for silver(I) with carbon- and platinum-fibre electrodes. Analytica Chimica Acta, 207, 27-35. doi:10.1016/s0003-2670(00)80779-5 es_ES
dc.description.references Ward Jones, S. E., Zheng, S. H., Jeffrey, C. A., Seretis, S., Morin, S., & Compton, R. G. (2008). Stripping voltammetry of bismuth at Au(111): Mathematical modelling and numerical simulation. Journal of Electroanalytical Chemistry, 616(1-2), 38-44. doi:10.1016/j.jelechem.2008.01.003 es_ES
dc.description.references Kuleff, I., Iliev, I., Pernicka, E., & Gergova, D. (2006). Chemical and lead isotope compositions of lead artefacts from ancient Thracia (Bulgaria). Journal of Cultural Heritage, 7(4), 244-256. doi:10.1016/j.culher.2006.04.003 es_ES
dc.description.references Martínez-Lázaro, I., Doménech-Carbó, A., Doménech-Carbó, M. T., Pastor-Valls, M. T., & Amigó-Borrás, V. (2009). Electrochemical criteria for evaluating conservative treatments applied to contemporary metallic sculpture. A case study. Journal of Solid State Electrochemistry, 14(3), 437-447. doi:10.1007/s10008-009-0908-0 es_ES
dc.description.references Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m es_ES
dc.description.references Pavlov, D. (1968). Processes of formation of divalent lead oxide compounds on anodic oxidation of lead in sulphuric acid. Electrochimica Acta, 13(10), 2051-2061. doi:10.1016/0013-4686(68)80115-x es_ES
dc.description.references Pavlov, D. (1981). Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 118, 167-185. doi:10.1016/s0022-0728(81)80539-6 es_ES
dc.description.references Pavlov, D., & Monakhov, B. (1987). Effect of Sb on the electrochemical properties of Pb/PbSO4/H2SO4 and Pb/PbO/PbSO4/H2SO4 electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 218(1-2), 135-153. doi:10.1016/0022-0728(87)87012-2 es_ES
dc.description.references Pavlov, D. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead-Acid Battery Positive Plate (Sn-Free Effect). Journal of The Electrochemical Society, 136(1), 27. doi:10.1149/1.2096603 es_ES
dc.description.references Pavlov, D., & Popova, R. (1970). Mechanism of passivation processes of the lead sulphate electrode. Electrochimica Acta, 15(9), 1483-1491. doi:10.1016/0013-4686(70)80069-x es_ES
dc.description.references Laitinen, T., Monahov, B., Salmi, K., & Sundholm, G. (1991). Ring-disk electrode studies of soluble intermediates formed during the polarization of Pb in H2SO4. Electrochimica Acta, 36(5-6), 953-963. doi:10.1016/0013-4686(91)85300-v es_ES
dc.description.references Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 es_ES
dc.description.references Scholz, F., Nitschke, L., & Henrion, G. (1989). A new procedure for fast electrochemical analysis of solid materials. Naturwissenschaften, 76(2), 71-72. doi:10.1007/bf00396709 es_ES
dc.description.references Scholz, F., Nitschke, L., Henrion, G., & Damaschun, F. (1989). A technique to study the electrochemistry of minerals. Naturwissenschaften, 76(4), 167-168. doi:10.1007/bf00366398 es_ES
dc.description.references Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 es_ES
dc.description.references Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719 es_ES
dc.description.references WYTTENBACH, A., & SCHUBIGER, P. A. (1973). TRACE ELEMENT CONTENT OF ROMAN LEAD BY NEUTRON ACTIVATION ANALYSIS. Archaeometry, 15(2), 199-207. doi:10.1111/j.1475-4754.1973.tb00090.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem