- -

Layered zeolitic materials: an approach to designing versatile functional solids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Layered zeolitic materials: an approach to designing versatile functional solids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2015-09-08T14:56:52Z
dc.date.available 2015-09-08T14:56:52Z
dc.date.issued 2014
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/54407
dc.description.abstract Relevant layered zeolites have been considered in this perspective article from the point of view of the synthesis methodologies, materials characterization and catalytic implications, considering the unique physico-chemical characteristics of lamellar materials. The potential of layered zeolitic precursors to generate novel lamellar accessible zeolites through swelling, intercalation, pillarization, delamination and/ or exfoliation treatments is studied, showing the chemical, functional and structural versatility exhibited by layered zeolites. Recent approaches based on the assembly of zeolitic nanosheets which act as inorganic structural units through the use of dual structural directing agents, the selective modification of germanosilicates and the direct generation of lamellar hybrid organic inorganic aluminosilicates are also considered to obtain layered solids with well-defined functionalities. The catalytic applications of the layered zeolites are also highlighted, pointing out the high accessibility and reactivity of active sites present in the lamellar framework. es_ES
dc.description.sponsorship The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Delaminated itq-2 zeolite es_ES
dc.subject Organic-inorganic aluminosilicate es_ES
dc.subject Piperazine silicate eu-19 es_ES
dc.subject Pillared molecular-sieve es_ES
dc.subject Diphenyl methane dadpm es_ES
dc.subject Alkali-metal cations es_ES
dc.subject Unit-cell thickness es_ES
dc.subject Mww-type zeolites es_ES
dc.subject Pure polymorph-c es_ES
dc.subject Catalytic-activity es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Layered zeolitic materials: an approach to designing versatile functional solids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3dt53181c
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Díaz Morales, UM.; Corma Canós, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions. 43(27):10292-10316. https://doi.org/10.1039/c3dt53181c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3dt53181c es_ES
dc.description.upvformatpinicio 10292 es_ES
dc.description.upvformatpfin 10316 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 27 es_ES
dc.relation.senia 281660 es_ES
dc.identifier.eissn 1477-9234
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Mallouk, T. E., & Gavin, J. A. (1998). Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 31(5), 209-217. doi:10.1021/ar970038p es_ES
dc.description.references Suslick, K. S., & Price, G. J. (1999). APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY. Annual Review of Materials Science, 29(1), 295-326. doi:10.1146/annurev.matsci.29.1.295 es_ES
dc.description.references Du, X., Zhang, D., Gao, R., Huang, L., Shi, L., & Zhang, J. (2013). Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chemical Communications, 49(60), 6770. doi:10.1039/c3cc42418a es_ES
dc.description.references Li, H., Zhang, D., Maitarad, P., Shi, L., Gao, R., Zhang, J., & Cao, W. (2012). In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3. Chemical Communications, 48(86), 10645. doi:10.1039/c2cc34758j es_ES
dc.description.references Wang, H., Zhang, D., Yan, T., Wen, X., Shi, L., & Zhang, J. (2012). Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22(45), 23745. doi:10.1039/c2jm35340g es_ES
dc.description.references Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696. doi:10.1039/c2jm31393f es_ES
dc.description.references Ravishankar, R., Joshi, P. N., Tamhankar, S. S., Sivasanker, S., & Shiralkar, V. P. (1998). A Novel Zeolite MCM-22: Sorption Characteristics. Adsorption Science & Technology, 16(8), 607-621. doi:10.1177/026361749801600803 es_ES
dc.description.references Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007 es_ES
dc.description.references Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027b es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871e es_ES
dc.description.references Kennedy, G. J., Lawton, S. L., Fung, A. S., Rubin, M. K., & Steuernagel, S. (1999). Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 49(4), 385-399. doi:10.1016/s0920-5861(98)00444-1 es_ES
dc.description.references Santos Marques, A. L., Fontes Monteiro, J. L., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32(1-2), 131-145. doi:10.1016/s1387-1811(99)00099-2 es_ES
dc.description.references Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1-3), 78-87. doi:10.1016/j.micromeso.2006.07.015 es_ES
dc.description.references Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4 es_ES
dc.description.references Ravishankar, R., Sen, T., Ramaswamy, V., Soni, H. S., Ganapathy, S., & Sivasanker., S. (1994). Synthesis, Characterization and Catalytic properties of Zeolite PSH-3/MCM-22. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 331-338. doi:10.1016/s0167-2991(08)64131-2 es_ES
dc.description.references Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31(3), 241-251. doi:10.1016/s1387-1811(99)00075-x es_ES
dc.description.references Wang, Y.-M., Shu, X.-T., & He, M.-Y. (2001). 02-P-34 - Static synthesis of zeolite MCM-22. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 194. doi:10.1016/s0167-2991(01)81373-2 es_ES
dc.description.references Chan, I. Y., Labun, P. A., Pan, M., & Zones, S. I. (1995). High-resolution electron microscopy characterization of SSZ-25 zeolite. Microporous Materials, 3(4-5), 409-418. doi:10.1016/0927-6513(94)00050-6 es_ES
dc.description.references Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319k es_ES
dc.description.references Aguilar, J., Corma, A., Melo, F. V., & Sastre, E. (2000). Alkylation of biphenyl with propylene using acid catalysts. Catalysis Today, 55(3), 225-232. doi:10.1016/s0920-5861(99)00250-3 es_ES
dc.description.references Camblor, M. A., Corell, C., Corma, A., Díaz-Cabañas, M.-J., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1996). A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22. Chemistry of Materials, 8(10), 2415-2417. doi:10.1021/cm960322v es_ES
dc.description.references Nicolopoulos, S., González-Calbet, J. M., Vallet-Regi, M., Camblor, M. A., Corell, C., Corma, A., & Diaz-Cabañas, M. J. (1997). Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison. Journal of the American Chemical Society, 119(45), 11000-11005. doi:10.1021/ja963703i es_ES
dc.description.references Millini, R., Perego, G., Parker, W. O., Bellussi, G., & Carluccio, L. (1995). Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 4(2-3), 221-230. doi:10.1016/0927-6513(95)00013-y es_ES
dc.description.references Khouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010 es_ES
dc.description.references Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes. Journal of Catalysis, 202(2), 245-255. doi:10.1006/jcat.2001.3278 es_ES
dc.description.references Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. The Journal of Physical Chemistry B, 105(15), 2897-2905. doi:10.1021/jp002816s es_ES
dc.description.references Wu, P., & Tatsumi, T. (2001). Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chemical Communications, (10), 897-898. doi:10.1039/b101426i es_ES
dc.description.references Sasidharan, M., Wu, P., & Tatsumi, T. (2002). Epoxidation of α,β-Unsaturated Carbonyl Compounds over Various Titanosilicates. Journal of Catalysis, 205(2), 332-338. doi:10.1006/jcat.2001.3440 es_ES
dc.description.references Wu, P., & Tatsumi, T. (2002). Uniquetrans-Selectivity of Ti-MWW in Epoxidation ofcis/trans-Alkenes with Hydrogen Peroxide. The Journal of Physical Chemistry B, 106(4), 748-753. doi:10.1021/jp0120965 es_ES
dc.description.references Wu, P., & Tatsumi, T. (2002). Preparation of B-free Ti-MWW through reversible structural conversion. Chemical Communications, (10), 1026-1027. doi:10.1039/b201170k es_ES
dc.description.references Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723 es_ES
dc.description.references Kim, S. J., Jung, K.-D., & Joo, O.-S. (2004). Synthesis and Characterization of Gallosilicate Molecular Sieve with the MCM-22 Framework Topology. Journal of Porous Materials, 11(4), 211-218. doi:10.1023/b:jopo.0000046348.23346.dd es_ES
dc.description.references Teixeira-Neto, A. A., Marchese, L., Landi, G., Lisi, L., & Pastore, H. O. (2008). [V,Al]-MCM-22 catalyst in the oxidative dehydrogenation of propane. Catalysis Today, 133-135, 1-6. doi:10.1016/j.cattod.2007.11.012 es_ES
dc.description.references Wu, Y., Wang, J., Liu, P., Zhang, W., Gu, J., & Wang, X. (2010). Framework-Substituted Lanthanide MCM-22 Zeolite: Synthesis and Characterization. Journal of the American Chemical Society, 132(51), 17989-17991. doi:10.1021/ja107633j es_ES
dc.description.references Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168 es_ES
dc.description.references Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q es_ES
dc.description.references Tsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872e es_ES
dc.description.references Ikeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026n es_ES
dc.description.references Xu, H., Yang, B., Jiang, J., Jia, L., He, M., & Wu, P. (2013). Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Microporous and Mesoporous Materials, 169, 88-96. doi:10.1016/j.micromeso.2012.10.005 es_ES
dc.description.references Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187 es_ES
dc.description.references Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6 es_ES
dc.description.references Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1997). A new layered (alumino) silicate and its transformation into a FER-type material by calcination. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1949-1956. doi:10.1016/s0167-2991(97)80659-3 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:8<1499::aid-anie1499>3.0.co;2-0 es_ES
dc.description.references Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d es_ES
dc.description.references Yang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024 es_ES
dc.description.references Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q es_ES
dc.description.references Millini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007 es_ES
dc.description.references García, R., Gómez-Hortigüela, L., Díaz, I., Sastre, E., & Pérez-Pariente, J. (2008). Synthesis of Materials Containing Ferrierite Layers Using Quinuclidine and 1-Benzyl-1-methylpyrrolidine as Structure-Directing Agents. An Experimental and Computational Study†. Chemistry of Materials, 20(3), 1099-1107. doi:10.1021/cm702098j es_ES
dc.description.references Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820 es_ES
dc.description.references Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., & Kennedy, G. J. (2002). MCM-69, a novel layered analogue of EU-19. Microporous and Mesoporous Materials, 53(1-3), 179-193. doi:10.1016/s1387-1811(02)00338-4 es_ES
dc.description.references Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085 es_ES
dc.description.references Araki, T. (1980). Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Zeitschrift für Kristallographie, 152(3-4), 207-213. doi:10.1524/zkri.1980.152.3-4.207 es_ES
dc.description.references Hughes, R. W., & Weller, M. T. (2002). The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction MAS and NMR. Microporous and Mesoporous Materials, 51(3), 189-196. doi:10.1016/s1387-1811(01)00476-0 es_ES
dc.description.references Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047 es_ES
dc.description.references Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513 es_ES
dc.description.references Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3 es_ES
dc.description.references Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x es_ES
dc.description.references Eder, F., He, Y., Nivarthy, G., & Lercher, J. A. (2010). Sorption of alkanes on novel pillared zeolites; comparison between MCM-22 and MCM-36. Recueil des Travaux Chimiques des Pays-Bas, 115(11-12), 531-535. doi:10.1002/recl.19961151114 es_ES
dc.description.references He, Y. ., Nivarthy, G. ., Eder, F., Seshan, K., & Lercher, J. . (1998). Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 25(1-3), 207-224. doi:10.1016/s1387-1811(98)00210-8 es_ES
dc.description.references Corma, A., Fornés, V., Martı́nez-Triguero, J., & Pergher, S. B. (1999). Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. Journal of Catalysis, 186(1), 57-63. doi:10.1006/jcat.1999.2503 es_ES
dc.description.references J. Roth, W., C. Vartuli, J., & T. Kresge, C. (2000). Characterization of mesoporous molecular sieves: differences between M41s and pillared layered zeolites. Studies in Surface Science and Catalysis, 501-508. doi:10.1016/s0167-2991(00)80251-7 es_ES
dc.description.references Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006 es_ES
dc.description.references Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824b es_ES
dc.description.references BARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021 es_ES
dc.description.references Kornatowski, J., Barth, J.-O., & Lercher, J. A. (2005). New modifications of layered MCM-36 molecular sieve pillared with various mixed oxides: facts and perspectives. Studies in Surface Science and Catalysis, 349-356. doi:10.1016/s0167-2991(05)80228-9 es_ES
dc.description.references Barth, J.-O., Jentys, A., Kornatowski, J., & Lercher, J. A. (2004). Control of Acid−Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. Chemistry of Materials, 16(4), 724-730. doi:10.1021/cm0349607 es_ES
dc.description.references Schenkel, R., Barth, J. O., Kornatowski, J., Jentys, A., & Lercher, J. A. (2004). Adsorption of methanol on MCM-36 derivatives with strong acid and base sites. Studies in Surface Science and Catalysis, 1598-1605. doi:10.1016/s0167-2991(04)80683-9 es_ES
dc.description.references Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711i es_ES
dc.description.references Liu, D., Bhan, A., Tsapatsis, M., & Al Hashimi, S. (2010). Catalytic Behavior of Brønsted Acid Sites in MWW and MFI Zeolites with Dual Meso- and Microporosity. ACS Catalysis, 1(1), 7-17. doi:10.1021/cs100042r es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Wu, P., Kan, Q., Wang, D., Xing, H., Jia, M., & Wu, T. (2005). The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization. Catalysis Communications, 6(7), 449-454. doi:10.1016/j.catcom.2005.04.002 es_ES
dc.description.references Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338(1-2), 37-43. doi:10.1016/j.apcata.2007.12.024 es_ES
dc.description.references Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization. Studies in Surface Science and Catalysis, 1139-1142. doi:10.1016/s0167-2991(08)80087-0 es_ES
dc.description.references Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057 es_ES
dc.description.references Zhang, Y., Xing, H., Yang, P., Wu, P., Jia, M., Sun, J., & Wu, T. (2007). Alkylation of benzene with propylene over MCM-36: A comparative study with MCM-22 zeolite synthesized from the same precursors. Reaction Kinetics and Catalysis Letters, 90(1), 45-52. doi:10.1007/s11144-007-4972-0 es_ES
dc.description.references Meloni, D., Dumitriu, E., Monaci, R., & Solinas, V. (2008). Liquid-phase alkylation of phenol with t-Butanol over H-MCM-22, H-ITQ-2 and H-MCM-36 catalysts. Studies in Surface Science and Catalysis, 1111-1114. doi:10.1016/s0167-2991(08)80080-8 es_ES
dc.description.references Dumitriu, E., Fechete, I., Caullet, P., Kessler, H., Hulea, V., Chelaru, C., … Bourdon, X. (2002). Conversion of aromatic hydrocarbons over MCM-22 and MCM-36 catalysts. Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium, Proceedings of the 2nd International FEZA (Federation of the European Zeolite Associations) Conference, 951-958. doi:10.1016/s0167-2991(02)80123-9 es_ES
dc.description.references Lacarriere, A., Luck, F., Świerczyński, D., Fajula, F., & Hulea, V. (2011). Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity. Applied Catalysis A: General, 402(1-2), 208-217. doi:10.1016/j.apcata.2011.06.003 es_ES
dc.description.references Barth, J., Jentys, A., & Lercher, J. A. (2004). Development of novel catalytic additives for the in situ reduction of NOx from fluid catalytic cracking units. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2441-2448. doi:10.1016/s0167-2991(04)80509-3 es_ES
dc.description.references Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049 es_ES
dc.description.references Zhu, J., Cui, Y., Wang, Y., & Wei, F. (2009). Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, (22), 3282. doi:10.1039/b902661d es_ES
dc.description.references Wang, Y. J., Tang, Y., Wang, X. D., Dong, A. G., Shan, W., & Gao, Z. (2001). Fabrication of Hierarchically Structured Zeolites through Layer-by-Layer Assembly of Zeolite Nanocrystals on Diatom Templates. Chemistry Letters, 30(11), 1118-1119. doi:10.1246/cl.2001.1118 es_ES
dc.description.references Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B., & Mann, S. (2000). Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core−Shell Building Blocks. Chemistry of Materials, 12(10), 2832-2834. doi:10.1021/cm000438y es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references Inagaki, S., & Tatsumi, T. (2009). Vapor-phase silylation for the construction of monomeric silica puncheons in the interlayer micropores of Al-MWW layered precursor. Chemical Communications, (18), 2583. doi:10.1039/b823524d es_ES
dc.description.references Wu, P., Ruan, J., Wang, L., Wu, L., Wang, Y., Liu, Y., … Tatsumi, T. (2008). Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. Journal of the American Chemical Society, 130(26), 8178-8187. doi:10.1021/ja0758739 es_ES
dc.description.references Wang, L., Wang, Y., Liu, Y., Wu, H., Li, X., He, M., & Wu, P. (2009). Alkoxysilylation of Ti-MWW lamellar precursors into interlayer pore-expanded titanosilicates. Journal of Materials Chemistry, 19(45), 8594. doi:10.1039/b910886f es_ES
dc.description.references Ruan, J., Wu, P., Slater, B., & Terasaki, O. (2005). Structure Elucidation of the Highly Active Titanosilicate Catalyst Ti-YNU-1. Angewandte Chemie International Edition, 44(41), 6719-6723. doi:10.1002/anie.200501939 es_ES
dc.description.references Moliner, M., & Corma, A. (2012). Synthesis of Expanded Titanosilicate MWW-Related Materials from a Pure Silica Precursor. Chemistry of Materials, 24(22), 4371-4375. doi:10.1021/cm302509m es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 es_ES
dc.description.references Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774 es_ES
dc.description.references Sastre, G., Catlow, C. R. A., Chica, A., & Corma, A. (2000). Molecular Dynamics of C7 Hydrocarbon Diffusion in ITQ-2. The Benefit of Zeolite Structures Containing Accessible Pockets. The Journal of Physical Chemistry B, 104(3), 416-422. doi:10.1021/jp9913970 es_ES
dc.description.references Ogino, I., Nigra, M. M., Hwang, S.-J., Ha, J.-M., Rea, T., Zones, S. I., & Katz, A. (2011). Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation. Journal of the American Chemical Society, 133(10), 3288-3291. doi:10.1021/ja111147z es_ES
dc.description.references Wu, P., Nuntasri, D., Ruan, J., Liu, Y., He, M., Fan, W., … Tatsumi, T. (2004). Delamination of Ti-MWW and High Efficiency in Epoxidation of Alkenes with Various Molecular Sizes. The Journal of Physical Chemistry B, 108(50), 19126-19131. doi:10.1021/jp037459a es_ES
dc.description.references Corma, A., Díaz, U., Fornés, V., Jordá, J. L., Domine, M., & Rey, F. (1999). Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chemical Communications, (9), 779-780. doi:10.1039/a900763f es_ES
dc.description.references Adam, W., Corma, A., García, H., & Weichold, O. (2000). Titanium-Catalyzed Heterogeneous Oxidations of Silanes, Chiral Allylic Alcohols, 3-Alkylcyclohexanes, and Thianthrene 5-Oxide: A Comparison of the Reactivities and Selectivities for the Large-Pore Zeolite Ti-β, the Mesoporous Ti-MCM-41, and the Layered Alumosilicate Ti-ITQ-2. Journal of Catalysis, 196(2), 339-344. doi:10.1006/jcat.2000.3043 es_ES
dc.description.references SERNA, P., BAUMES, L., MOLINER, M., & CORMA, A. (2008). Combining high-throughput experimentation, advanced data modeling and fundamental knowledge to develop catalysts for the epoxidation of large olefins and fatty esters. Journal of Catalysis, 258(1), 25-34. doi:10.1016/j.jcat.2008.05.033 es_ES
dc.description.references Baumes, L. A., Serna, P., & Corma, A. (2010). Merging traditional and high-throughput approaches results in efficient design, synthesis and screening of catalysts for an industrial process. Applied Catalysis A: General, 381(1-2), 197-208. doi:10.1016/j.apcata.2010.04.012 es_ES
dc.description.references Juttu, G. G., & Lobo, R. F. (2000). Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Microporous and Mesoporous Materials, 40(1-3), 9-23. doi:10.1016/s1387-1811(00)00233-x es_ES
dc.description.references Yang, P. P., Yu, J. F., Wang, Z. L., Xu, M. P., Liu, Q. S., Yang, X. W., & Wu, T. H. (2005). Preparation, characterization of MCM-56 and catalytic activity in one-step synthesis of MIBK from acetone. Catalysis Communications, 6(2), 107-111. doi:10.1016/j.catcom.2004.11.008 es_ES
dc.description.references CORMA, A., DIAZCABANAS, M., MOLINER, M., & MARTINEZ, C. (2006). Discovery of a new catalytically active and selective zeolite (ITQ-30) by high-throughput synthesis techniques. Journal of Catalysis, 241(2), 312-318. doi:10.1016/j.jcat.2006.04.036 es_ES
dc.description.references Roth, W. J., Dorset, D. L., & Kennedy, G. J. (2011). Discovery of new MWW family zeolite EMM-10: Identification of EMM-10P as the missing MWW precursor with disordered layers. Microporous and Mesoporous Materials, 142(1), 168-177. doi:10.1016/j.micromeso.2010.10.052 es_ES
dc.description.references Wang, J., Tu, X., Hua, W., Yue, Y., & Gao, Z. (2011). Role of the acidity and porosity of MWW-type zeolites in liquid-phase reaction. Microporous and Mesoporous Materials, 142(1), 82-90. doi:10.1016/j.micromeso.2010.11.021 es_ES
dc.description.references JUNG, H., PARK, S., SHIN, C., PARK, Y., & HONG, S. (2007). Comparative catalytic studies on the conversion of 1-butene and n-butane to isobutene over MCM-22 and ITQ-2 zeolites. Journal of Catalysis, 245(1), 65-74. doi:10.1016/j.jcat.2006.09.015 es_ES
dc.description.references Inagaki, S., Kamino, K., Kikuchi, E., & Matsukata, M. (2007). Shape selectivity of MWW-type aluminosilicate zeolites in the alkylation of toluene with methanol. Applied Catalysis A: General, 318, 22-27. doi:10.1016/j.apcata.2006.10.036 es_ES
dc.description.references Corma, A. (1997). Organic reactions catalyzed over solid acids. Catalysis Today, 38(3), 257-308. doi:10.1016/s0920-5861(97)81500-1 es_ES
dc.description.references Botella, P., Corma, A., Carr, R. H., & Mitchell, C. J. (2011). Towards an industrial synthesis of diamino diphenyl methane (DADPM) using novel delaminated materials: A breakthrough step in the production of isocyanates for polyurethanes. Applied Catalysis A: General, 398(1-2), 143-149. doi:10.1016/j.apcata.2011.03.026 es_ES
dc.description.references Corma, A., Botella, P., & Mitchell, C. (2004). Replacing HCl by solid acids in industrial processes: synthesis of diamino diphenyl methane (DADPM) for producing polyurethanesElectronic supplementary information (ESI) available: detailed analytical procedures by GC and 1H-NMR techniques. See http://www.rsc.org/suppdata/cc/b4/b406303a/. Chemical Communications, (17), 2008. doi:10.1039/b406303a es_ES
dc.description.references Min, H.-K., Park, M. B., & Hong, S. B. (2010). Methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites. Journal of Catalysis, 271(2), 186-194. doi:10.1016/j.jcat.2010.01.012 es_ES
dc.description.references Wang, J., Zhang, F., Hua, W., Yue, Y., & Gao, Z. (2012). Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catalysis Communications, 18, 63-67. doi:10.1016/j.catcom.2011.11.023 es_ES
dc.description.references Corma, A., González-Alfaro, V., & Orchillés, A. . (2001). Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil. Journal of Catalysis, 200(1), 34-44. doi:10.1006/jcat.2001.3181 es_ES
dc.description.references Corma, A., Martı́nez, A., & Martı́nez-Soria, V. (2001). Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes. Journal of Catalysis, 200(2), 259-269. doi:10.1006/jcat.2001.3219 es_ES
dc.description.references Prieto, G., Martínez, A., Concepción, P., & Moreno-Tost, R. (2009). Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. Journal of Catalysis, 266(1), 129-144. doi:10.1016/j.jcat.2009.06.001 es_ES
dc.description.references MARTINEZ, A., & PRIETO, G. (2007). Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. Journal of Catalysis, 245(2), 470-476. doi:10.1016/j.jcat.2006.11.002 es_ES
dc.description.references Concepción, P., López, C., Martínez, A., & Puntes, V. F. (2004). Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer–Tropsch synthesis reaction. Journal of Catalysis, 228(2), 321-332. doi:10.1016/j.jcat.2004.09.011 es_ES
dc.description.references Martínez, A., Valencia, S., Murciano, R., Cerqueira, H. S., Costa, A. F., & S.-Aguiar, E. F. (2008). Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline. Applied Catalysis A: General, 346(1-2), 117-125. doi:10.1016/j.apcata.2008.05.015 es_ES
dc.description.references Martínez, A., Peris, E., & Sastre, G. (2005). Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts. Catalysis Today, 107-108, 676-684. doi:10.1016/j.cattod.2005.07.051 es_ES
dc.description.references Chica, A., & Sayas, S. (2009). Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. Catalysis Today, 146(1-2), 37-43. doi:10.1016/j.cattod.2008.12.024 es_ES
dc.description.references RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861 es_ES
dc.description.references Aquino, C. C., Pastore, H. O., Masters, A. F., & Maschmeyer, T. (2011). An ITQ-2/TUD-1 Micro-/Mesoporous Composite: In Situ Delamination as a Tool for the Preparation of Innovative Materials. ChemCatChem, 3(11), 1759-1762. doi:10.1002/cctc.201100077 es_ES
dc.description.references Climent, M. J., Corma, A., & Velty, A. (2004). Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 263(2), 155-161. doi:10.1016/j.apcata.2003.12.007 es_ES
dc.description.references CLIMENT, M., CORMA, A., & IBORRA, S. (2005). Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 233(2), 308-316. doi:10.1016/j.jcat.2005.05.003 es_ES
dc.description.references BOTELLA, P., CORMA, A., IBORRA, S., MONTON, R., RODRIGUEZ, I., & COSTA, V. (2007). Nanosized and delayered zeolitic materials for the liquid-phase Beckmann rearrangement of cyclododecanone oxime. Journal of Catalysis, 250(1), 161-170. doi:10.1016/j.jcat.2007.05.020 es_ES
dc.description.references GOMEZ, M., CANTIN, A., CORMA, A., & DELAHOZ, A. (2005). Use of different microporous and mesoporous materials as catalyst in the Diels–Alder and retro-Diels–Alder reaction between cyclopentadiene and p-benzoquinoneActivity of Al-, Ti- and Sn-doped silica. Journal of Molecular Catalysis A: Chemical, 240(1-2), 16-21. doi:10.1016/j.molcata.2005.06.030 es_ES
dc.description.references Wang, J., Jaenicke, S., Chuah, G. K., Hua, W., Yue, Y., & Gao, Z. (2011). Acidity and porosity modulation of MWW type zeolites for Nopol production by Prins condensation. Catalysis Communications, 12(12), 1131-1135. doi:10.1016/j.catcom.2011.03.034 es_ES
dc.description.references Antunes, M. M., Lima, S., Fernandes, A., Pillinger, M., Ribeiro, M. F., & Valente, A. A. (2012). Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Applied Catalysis A: General, 417-418, 243-252. doi:10.1016/j.apcata.2011.12.046 es_ES
dc.description.references Fuerte, A., Corma, A., Iglesias, M., Morales, E., & Sánchez, F. (2006). Approaches to the synthesis of heterogenised metalloporphyrins. Journal of Molecular Catalysis A: Chemical, 246(1-2), 109-117. doi:10.1016/j.molcata.2005.10.031 es_ES
dc.description.references Baleizão, C., Gigante, B., Sabater, M. J., Garcia, H., & Corma, A. (2002). On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Applied Catalysis A: General, 228(1-2), 279-288. doi:10.1016/s0926-860x(01)00979-6 es_ES
dc.description.references Ayala, V., Corma, A., Iglesias, M., Rincón, J. A., & Sánchez, F. (2004). Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 224(1), 170-177. doi:10.1016/j.jcat.2004.02.017 es_ES
dc.description.references González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029 es_ES
dc.description.references González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119 es_ES
dc.description.references DOMINGUEZ, I., FORNES, V., & SABATER, M. (2004). Chiral manganese(III) salen catalysts immobilized on MCM-41 and delaminated zeolites ITQ-2 and ITQ-6 through new axial coordinating linkers. Journal of Catalysis, 228(1), 92-99. doi:10.1016/j.jcat.2004.08.021 es_ES
dc.description.references Baleizão, C. (2003). Chiral vanadyl Schiff base complex anchored on silicas as solid enantioselective catalysts for formation of cyanohydrins: optimization of the asymmetric induction by support modification. Journal of Catalysis, 215(2), 199-207. doi:10.1016/s0021-9517(03)00007-1 es_ES
dc.description.references Fuerte, A., Corma, A., & Sánchez, F. (2005). Heterogenised chiral amines as environmentally friendly base catalysts for enantioselective Michael addition. Catalysis Today, 107-108, 404-409. doi:10.1016/j.cattod.2005.07.095 es_ES
dc.description.references Corma, A., Gutiérrez-Puebla, E., Iglesias, M., Monge, A., Pérez-Ferreras, S., & Sánchez, F. (2006). New Heterogenized Gold(I)-Heterocyclic Carbene Complexes as Reusable Catalysts in Hydrogenation and Cross-Coupling Reactions. Advanced Synthesis & Catalysis, 348(14), 1899-1907. doi:10.1002/adsc.200606163 es_ES
dc.description.references Corma, A., González-Arellano, C., Iglesias, M., Pérez-Ferreras, S., & Sánchez, F. (2007). Heterogenized Gold(I), Gold(III), and Palladium(II) Complexes for C-C Bond Reactions. Synlett, 2007(11), 1771-1774. doi:10.1055/s-2007-984500 es_ES
dc.description.references Macario, A., Katovic, A., Giordano, G., Forni, L., Carloni, F., Filippini, A., & Setti, L. (2005). Immobilization of Lipase on microporous and mesoporous materials: studies of the support surfaces. Studies in Surface Science and Catalysis, 381-394. doi:10.1016/s0167-2991(05)80166-1 es_ES
dc.description.references Corma, A., Forne´s, V., Sales Galletero, M., García, H., & Gómez-García, C. J. (2001). Prevalence of the external surface over the internal pores in the spontaneous generation of tetrathiafulvalene radical cation incorporated in the novel delaminated ITQ-2 zeolite. Physical Chemistry Chemical Physics, 3(7), 1218-1222. doi:10.1039/b009304l es_ES
dc.description.references Galletero, M. S., Corma, A., Ferrer, B., Fornés, V., & García, H. (2003). Confinement Effects at the External Surface of Delaminated Zeolites (ITQ-2):  An Inorganic Mimic of Cyclodextrins. The Journal of Physical Chemistry B, 107(5), 1135-1141. doi:10.1021/jp0210531 es_ES
dc.description.references Corma, A., Fornés, V., Galletero, M. S., García, H., & Scaiano, J. C. (2002). Evidence for through-framework electron transfer in intrazeolite photochemistry. Case of Ru(bpy)32+ and methylviologen in novel delaminated ITQ-2 zeolite. Chemical Communications, (4), 334-335. doi:10.1039/b110440c es_ES
dc.description.references Corma, A., Díaz, U., Ferrer, B., Fornés, V., Galletero, M. S., & García, H. (2004). Controlling the Emission of Blue-Emitting Complexes by Encapsulation within Zeolite Cavities. Chemistry of Materials, 16(7), 1170-1176. doi:10.1021/cm0347640 es_ES
dc.description.references Atienzar, P., Corma, A., García, H., & Scaiano, J. C. (2004). Diffuse Reflectance Laser Flash Photolysis Study of Titanium-Containing Zeolites. Chemistry of Materials, 16(6), 982-987. doi:10.1021/cm049941r es_ES
dc.description.references Corma, A., Galletero, M. S., García, H., Palomares, E., & Rey, F. (2002). Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide. Chemical Communications, (10), 1100-1101. doi:10.1039/b201523b es_ES
dc.description.references Dathe, H., Sedlmair, C., Jentys, A., & Lercher, J. A. (2004). Adsorption of SO2 on different metal impregnated zeolites. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 3003-3009. doi:10.1016/s0167-2991(04)80584-6 es_ES
dc.description.references Yang, S.-T., Kim, J.-Y., Kim, J., & Ahn, W.-S. (2012). CO2 capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel, 97, 435-442. doi:10.1016/j.fuel.2012.03.034 es_ES
dc.description.references Pawlesa, J., Zukal, A., & Čejka, J. (2007). Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations. Adsorption, 13(3-4), 257-265. doi:10.1007/s10450-007-9023-7 es_ES
dc.description.references Domínguez, I., Pawlesa, J., Zukal, A., & Čejka, J. (2008). Ferrierite and MCM-22 for the CO2 adsorption. Studies in Surface Science and Catalysis, 603-606. doi:10.1016/s0167-2991(08)80272-8 es_ES
dc.description.references Zukal, A., Pawlesa, J., & Čejka, J. (2009). Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations. Adsorption, 15(3), 264-270. doi:10.1007/s10450-009-9178-5 es_ES
dc.description.references Zukal, A., Dominguez, I., Mayerová, J., & Čejka, J. (2009). Functionalization of Delaminated Zeolite ITQ-6 for the Adsorption of Carbon Dioxide. Langmuir, 25(17), 10314-10321. doi:10.1021/la901156z es_ES
dc.description.references Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777k es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). Ti-ferrierite and TiITQ-6: synthesis and catalytic activity for the epoxidation of olefins with H2O2. Chemical Communications, (2), 137-138. doi:10.1039/a908748f es_ES
dc.description.references Corma, A., Fornés, V., Jordá, J. L., Rey, F., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2001). Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, (5), 419-420. doi:10.1039/b009232k es_ES
dc.description.references Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:1<71::aid-adma71>3.0.co;2-w es_ES
dc.description.references Dumitriu, E., Secundo, F., Patarin, J., & Fechete, I. (2003). Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic, 22(3-4), 119-133. doi:10.1016/s1381-1177(03)00015-8 es_ES
dc.description.references Solsona, B., Lopez Nieto, J. M., & Díaz, U. (2006). Siliceous ITQ-6: A new support for vanadia in the oxidative dehydrogenation of propane. Microporous and Mesoporous Materials, 94(1-3), 339-347. doi:10.1016/j.micromeso.2006.04.007 es_ES
dc.description.references Eilertsen, E. A., Ogino, I., Hwang, S.-J., Rea, T., Yeh, S., Zones, S. I., & Katz, A. (2011). Nonaqueous Fluoride/Chloride Anion-Promoted Delamination of Layered Zeolite Precursors: Synthesis and Characterization of UCB-2. Chemistry of Materials, 23(24), 5404-5408. doi:10.1021/cm202364q es_ES
dc.description.references Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288 es_ES
dc.description.references Park, W., Yu, D., Na, K., Jelfs, K. E., Slater, B., Sakamoto, Y., & Ryoo, R. (2011). Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chemistry of Materials, 23(23), 5131-5137. doi:10.1021/cm201709q es_ES
dc.description.references Jung, J., Jo, C., Cho, K., & Ryoo, R. (2012). Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. Journal of Materials Chemistry, 22(11), 4637. doi:10.1039/c2jm16539b es_ES
dc.description.references Na, K., Choi, M., Park, W., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2010). Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. Journal of the American Chemical Society, 132(12), 4169-4177. doi:10.1021/ja908382n es_ES
dc.description.references Na, K., Park, W., Seo, Y., & Ryoo, R. (2011). Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores. Chemistry of Materials, 23(5), 1273-1279. doi:10.1021/cm103245m es_ES
dc.description.references Corma, A., Fornés, V., Forni, L., Márquez, F., Martı́nez-Triguero, J., & Moscotti, D. (1998). 2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites. Journal of Catalysis, 179(2), 451-458. doi:10.1006/jcat.1998.2233 es_ES
dc.description.references Kim, K., Ryoo, R., Jang, H.-D., & Choi, M. (2012). Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis, 288, 115-123. doi:10.1016/j.jcat.2012.01.009 es_ES
dc.description.references Seo, Y., Cho, K., Jung, Y., & Ryoo, R. (2013). Characterization of the Surface Acidity of MFI Zeolite Nanosheets by 31P NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin. ACS Catalysis, 3(4), 713-720. doi:10.1021/cs300824e es_ES
dc.description.references Kim, J., Park, W., & Ryoo, R. (2011). Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catalysis, 1(4), 337-341. doi:10.1021/cs100160g es_ES
dc.description.references Jo, C., Ryoo, R., Žilková, N., Vitvarová, D., & Čejka, J. (2013). The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science & Technology, 3(8), 2119. doi:10.1039/c3cy00146f es_ES
dc.description.references Koekkoek, A. J. J., Kim, W., Degirmenci, V., Xin, H., Ryoo, R., & Hensen, E. J. M. (2013). Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. Journal of Catalysis, 299, 81-89. doi:10.1016/j.jcat.2012.12.002 es_ES
dc.description.references Verheyen, E., Jo, C., Kurttepeli, M., Vanbutsele, G., Gobechiya, E., Korányi, T. I., … Martens, J. A. (2013). Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 300, 70-80. doi:10.1016/j.jcat.2012.12.017 es_ES
dc.description.references Kim, J., Kim, W., Seo, Y., Kim, J.-C., & Ryoo, R. (2013). n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. Journal of Catalysis, 301, 187-197. doi:10.1016/j.jcat.2013.02.015 es_ES
dc.description.references Na, K., Jo, C., Kim, J., Ahn, W.-S., & Ryoo, R. (2011). MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catalysis, 1(8), 901-907. doi:10.1021/cs2002143 es_ES
dc.description.references Choi, M., Na, K., & Ryoo, R. (2009). The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization. Chemical Communications, (20), 2845. doi:10.1039/b905087f es_ES
dc.description.references Na, K., Choi, M., & Ryoo, R. (2009). Cyclic diquaternary ammoniums for nanocrystalline BEA, MTW and MFI zeolites with intercrystalline mesoporosity. Journal of Materials Chemistry, 19(37), 6713. doi:10.1039/b909792a es_ES
dc.description.references Seo, Y., Lee, S., Jo, C., & Ryoo, R. (2013). Microporous Aluminophosphate Nanosheets and Their Nanomorphic Zeolite Analogues Tailored by Hierarchical Structure-Directing Amines. Journal of the American Chemical Society, 135(24), 8806-8809. doi:10.1021/ja403580j es_ES
dc.description.references Corma, A., Navarro, M. T., Rey, F., Rius, J., & Valencia, S. (2001). Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie International Edition, 40(12), 2277-2280. doi:10.1002/1521-3773(20010618)40:12<2277::aid-anie2277>3.0.co;2-o es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Martínez-Triguero, J., Rey, F., & Rius, J. (2002). A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 418(6897), 514-517. doi:10.1038/nature00924 es_ES
dc.description.references Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107 es_ES
dc.description.references Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921 es_ES
dc.description.references Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534p es_ES
dc.description.references Corma, A., Navarro, M. T., Rey, F., & Valencia, S. (2001). Synthesis of pure polymorph C of Beta zeolite in a fluoride-free system. Chemical Communications, (16), 1486-1487. doi:10.1039/b104114m es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., & Rey, F. (2003). Synthesis of ITQ-21 in OH– media. Chemical Communications, (9), 1050-1051. doi:10.1039/b212477g es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572g es_ES
dc.description.references Paillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242 es_ES
dc.description.references Roth, W. J., Shvets, O. V., Shamzhy, M., Chlubná, P., Kubů, M., Nachtigall, P., & Čejka, J. (2011). Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 133(16), 6130-6133. doi:10.1021/ja200741r es_ES
dc.description.references Shvets, O. V., Nachtigall, P., Roth, W. J., & Čejka, J. (2013). UTL zeolite and the way beyond. Microporous and Mesoporous Materials, 182, 229-238. doi:10.1016/j.micromeso.2013.03.023 es_ES
dc.description.references Chlubná, P., Roth, W. J., Greer, H. F., Zhou, W., Shvets, O., Zukal, A., … Morris, R. E. (2013). 3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 25(4), 542-547. doi:10.1021/cm303260z es_ES
dc.description.references Roth, W. J., Nachtigall, P., Morris, R. E., Wheatley, P. S., Seymour, V. R., Ashbrook, S. E., … Čejka, J. (2013). A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 5(7), 628-633. doi:10.1038/nchem.1662 es_ES
dc.description.references Grajciar, L., Bludský, O., Roth, W. J., & Nachtigall, P. (2013). Theoretical investigation of layered zeolite frameworks: Interaction between IPC-1P layers derived from zeolite UTL. Catalysis Today, 204, 15-21. doi:10.1016/j.cattod.2012.07.018 es_ES
dc.description.references Verheyen, E., Joos, L., Van Havenbergh, K., Breynaert, E., Kasian, N., Gobechiya, E., … Martens, J. A. (2012). Design of zeolite by inverse sigma transformation. Nature Materials, 11(12), 1059-1064. doi:10.1038/nmat3455 es_ES
dc.description.references Kasian, N., Verheyen, E., Vanbutsele, G., Houthoofd, K., Koranyi, T. I., Martens, J. A., & Kirschhock, C. E. A. (2013). Catalytic activity of germanosilicate UTL zeolite in bifunctional hydroisomerisation of n-decane. Microporous and Mesoporous Materials, 166, 153-160. doi:10.1016/j.micromeso.2012.07.017 es_ES
dc.description.references Almond, G. G., Harris, R. K., & Franklin, K. R. (1997). A structural consideration of kanemite, octosilicate, magadiite and kenyaite. Journal of Materials Chemistry, 7(4), 681-687. doi:10.1039/a606856a es_ES
dc.description.references Dailey, J. S., & Pinnavaia, T. J. (1992). Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chemistry of Materials, 4(4), 855-863. doi:10.1021/cm00022a022 es_ES
dc.description.references Shea, K. J., Loy, D. A., & Webster, O. (1992). Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. Journal of the American Chemical Society, 114(17), 6700-6710. doi:10.1021/ja00043a014 es_ES
dc.description.references Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g es_ES
dc.description.references (s. f.). doi:10.1021/cm070553 es_ES
dc.description.references Díaz, U., Cantín, Á., García, T., & Corma, A. (2008). Layered hybrid materials with nanotechnological applications: use of disilane precursors as pillaring agents. Studies in Surface Science and Catalysis, 337-340. doi:10.1016/s0167-2991(08)80211-x es_ES
dc.description.references Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024 es_ES
dc.description.references Zanardi, S., Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., & Rizzo, C. (2008). On the crystal structure solution and characterization of ECS-2, a novel microporous hybrid organic-inorganic material. Studies in Surface Science and Catalysis, 965-968. doi:10.1016/s0167-2991(08)80050-x es_ES
dc.description.references Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496 es_ES
dc.description.references Zanardi, S., Parker, W. O., Carati, A., Botti, G., & Montanari, E. (2013). On the thermal behaviour of the crystalline hybrid organic–inorganic aluminosilicate ECS-3. Microporous and Mesoporous Materials, 172, 200-205. doi:10.1016/j.micromeso.2013.01.029 es_ES
dc.description.references Bellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417h es_ES
dc.description.references Zhang, M., Gao, B., Pu, K., Yao, Y., & Inyang, M. (2013). Graphene-mediated self-assembly of zeolite-based microcapsules. Chemical Engineering Journal, 223, 556-562. doi:10.1016/j.cej.2013.03.042 es_ES
dc.description.references Matsuo, Y., Ueda, S., Konishi, K., Marco-Lozar, J. P., Lozano-Castelló, D., & Cazorla-Amorós, D. (2012). Pillared carbons consisting of silsesquioxane bridged graphene layers for hydrogen storage materials. International Journal of Hydrogen Energy, 37(14), 10702-10708. doi:10.1016/j.ijhydene.2012.04.033 es_ES
dc.description.references Nishihara, H., Itoi, H., Kogure, T., Hou, P.-X., Touhara, H., Okino, F., & Kyotani, T. (2009). Investigation of the Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Ordered Microporous Carbons as Model Materials. Chemistry - A European Journal, 15(21), 5355-5363. doi:10.1002/chem.200802406 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2009). Mono- and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2(6), 500-506. doi:10.1002/cssc.200800259 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem