Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Lotfi, Taher | es_ES |
dc.contributor.author | Mahdiani, Katayoun | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2015-09-17T14:17:40Z | |
dc.date.available | 2015-09-17T14:17:40Z | |
dc.date.issued | 2014-12 | |
dc.identifier.issn | 0167-8019 | |
dc.identifier.uri | http://hdl.handle.net/10251/54768 | |
dc.description.abstract | Two new three-step classes of optimal iterative methods to approximate simple roots of nonlinear equations, satisfying the Kung-Traub's conjecture, are designed. The development of the methods and their convergence analysis are provided joint with a generalization of both processes. In order to check the goodness of the theoretical results, some concrete methods are extracted and numerical and dynamically compared with some known methods. | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Acta Applicandae Mathematicae | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multipoint iterative method | es_ES |
dc.subject | Nonlinear equation | es_ES |
dc.subject | Optimal order | es_ES |
dc.subject | Kung-Traub's conjecture | es_ES |
dc.subject | Kung-Traub's method | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Two optimal general classes of iterative methods with eighth-order | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10440-014-9869-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Lotfi, T.; Mahdiani, K.; Torregrosa Sánchez, JR. (2014). Two optimal general classes of iterative methods with eighth-order. Acta Applicandae Mathematicae. 134(1):61-74. https://doi.org/10.1007/s10440-014-9869-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10440-014-9869-0 | es_ES |
dc.description.upvformatpinicio | 61 | es_ES |
dc.description.upvformatpfin | 74 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 134 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 282659 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Higham, N.J.: Funstions of Matrices: Theory and Computation. SIAM, Philadelphia (2008) | es_ES |
dc.description.references | Chun, C., Kim, Y.: Several new third-order iterative methods for solving nonlinear equations. Acta Appl. Math. 109(3), 1053–1063 (2010) | es_ES |
dc.description.references | Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |
dc.description.references | Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A family of iterative methods with sixth and seventh order convergence for nonlinear equations. Math. Comput. Model. 52, 1490–1496 (2010) | es_ES |
dc.description.references | Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000) | es_ES |
dc.description.references | Wang, H., Liu, H.: Note on a cubically convergent Newton-type method under weak conditions. Acta Appl. Math. 110(2), 725–735 (2010) | es_ES |
dc.description.references | Ostrowski, A.M.: Solution of Equations and Systems of Equations. Prentice-Hall, Englewood Cliffs (1964) | es_ES |
dc.description.references | Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974) | es_ES |
dc.description.references | Petković, M.S., Neta, B., Petković, L.D., Dz̆nić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013) | es_ES |
dc.description.references | Petković, M.S., Petković, L.D.: Families of optimal multipoint methods for solving polynomial equations. Appl. Anal. Discrete Math. 4, 1–22 (2010) | es_ES |
dc.description.references | Soleymani, F.: Two novel classes of two-step optimal methods for all the zeros in an interval. Afr. Math. (2012). doi: 10.1007/s13370-012-0112-8 | es_ES |
dc.description.references | Džunić, J., Petković, M.S., Petković, L.D.: A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Appl. Math. Comput. 217(19), 7612–7619 (2011) | es_ES |
dc.description.references | Thukral, R., Petković, M.S.: A family of three-point methods of optimal order for solving nonlinear equation. J. Comput. Appl. Math. 233(9), 2278–2284 (2010) | es_ES |
dc.description.references | Obrechkoff, N.: Sur la solution numeriue des equations. God. Sofij. Univ. 56(1), 73–83 (1963) | es_ES |
dc.description.references | Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966) | es_ES |
dc.description.references | Petković, M.S.: Multipoint methods for solving nonlinear equations: a survey. Appl. Math. Comput. 226, 635–660 (2014) | es_ES |
dc.description.references | Džunić, J., Petković, M.S.: A family of three-point methods of Ostrowski’s type for solving nonlinear equations. J. Appl. Math. 2012, 425867 (2012) | es_ES |
dc.description.references | Soleymani, F., Vanani, S.K., Afghani, A.: A general three-step class of optimal iterations for nonlinear equations. Math. Probl. Eng. 2011, 469512 (2011). 10 pp. | es_ES |
dc.description.references | Geum, Y.H., Kim, Y.I.: A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Appl. Math. Lett. 24, 929–935 (2011) | es_ES |
dc.description.references | Geum, Y.H., Kim, Y.I.: A biparametric family of eighth-order methods with their third-step weighting function decomposed into a one-variable linear fraction and a two-variable generic function. Comput. Math. Appl. 61, 708–714 (2011) | es_ES |
dc.description.references | Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) | es_ES |
dc.description.references | Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 780153 (2013). 11 pp. | es_ES |