Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035
Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115
Soleymani, F., Khattri, S. K., & Karimi Vanani, S. (2012). Two new classes of optimal Jarratt-type fourth-order methods. Applied Mathematics Letters, 25(5), 847-853. doi:10.1016/j.aml.2011.10.030
[+]
Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035
Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115
Soleymani, F., Khattri, S. K., & Karimi Vanani, S. (2012). Two new classes of optimal Jarratt-type fourth-order methods. Applied Mathematics Letters, 25(5), 847-853. doi:10.1016/j.aml.2011.10.030
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). Accelerated methods of order <mml:math altimg=«si12.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mn>2</mml:mn><mml:mi>p</mml:mi></mml:math> for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(10), 2696-2702. doi:10.1016/j.cam.2009.11.018
Dayton, B. H., Li, T.-Y., & Zeng, Z. (2011). Multiple zeros of nonlinear systems. Mathematics of Computation, 80(276), 2143-2143. doi:10.1090/s0025-5718-2011-02462-2
Haijun, W. (2008). New third-order method for solving systems of nonlinear equations. Numerical Algorithms, 50(3), 271-282. doi:10.1007/s11075-008-9227-2
Noor, M. A., Waseem, M., Noor, K. I., & Al-Said, E. (2012). Variational iteration technique for solving a system of nonlinear equations. Optimization Letters, 7(5), 991-1007. doi:10.1007/s11590-012-0479-3
Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z
Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062
[-]