- -

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

Show full item record

Torregrosa, AJ.; Hoyas, S.; Pérez Quiles, MJ.; Mompó Laborda, JM. (2013). Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects. Communications in Computational Physics. 13(2):428-441. doi:10.4208/cicp.090611.170212a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55020

Files in this item

Item Metadata

Title: Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects
Author: Torregrosa, A. J. Hoyas, S Pérez Quiles, María Jezabel Mompó Laborda, Juan Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
In this article the instabilities appearing in a liquid layer are studied numerically by means of the linear stability method. The fluid is confined in an annular pool and is heated from below with a linear decreasing ...[+]
Subjects: Thermocapillary convection , Prandtl number , Biot number , Linear stability
Copyrigths: Reserva de todos los derechos
Source:
Communications in Computational Physics. (issn: 1815-2406 )
DOI: 10.4208/cicp.090611.170212a
Publisher:
Global Science Press
Publisher version: http://dx.doi.org/10.4208/cicp.090611.170212a
Thanks:
The code developed for this article was finished during a visit of S. Hoyas to the Lehrstuhl fur Stromungsmechanik of the University of Erlangen-Nurnberg, funded by the Government of Valencia and the Universitat Politecnica ...[+]
Type: Artículo

References

Shi, W., Ermakov, M. K., Li, Y.-R., Peng, L., & Imaishi, N. (2009). Influence of Buoyancy Force on Thermocapillary Convection Instability in the Differentially Heated Annular Pools of Silicon Melt. Microgravity Science and Technology, 21(S1), 289-297. doi:10.1007/s12217-009-9118-8

SCHWABE, D., ZEBIB, A., & SIM, B.-C. (2003). Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. Journal of Fluid Mechanics, 491, 239-258. doi:10.1017/s002211200300541x

Pelacho, M. A., & Burguete, J. (1999). Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection. Physical Review E, 59(1), 835-840. doi:10.1103/physreve.59.835 [+]
Shi, W., Ermakov, M. K., Li, Y.-R., Peng, L., & Imaishi, N. (2009). Influence of Buoyancy Force on Thermocapillary Convection Instability in the Differentially Heated Annular Pools of Silicon Melt. Microgravity Science and Technology, 21(S1), 289-297. doi:10.1007/s12217-009-9118-8

SCHWABE, D., ZEBIB, A., & SIM, B.-C. (2003). Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. Journal of Fluid Mechanics, 491, 239-258. doi:10.1017/s002211200300541x

Pelacho, M. A., & Burguete, J. (1999). Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection. Physical Review E, 59(1), 835-840. doi:10.1103/physreve.59.835

Mercier, J. F., & Normand, C. (1996). Buoyant‐thermocapillary instabilities of differentially heated liquid layers. Physics of Fluids, 8(6), 1433-1445. doi:10.1063/1.868920

Herrero, H., & Mancho, A. M. (1998). Influence of aspect ratio in convection due to nonuniform heating. Physical Review E, 57(6), 7336-7339. doi:10.1103/physreve.57.7336

Shi, W., Liu, X., Li, G., Li, Y.-R., Peng, L., Ermakov, M. K., & Imaishi, N. (2010). Thermocapillary Convection Instability in Shallow Annular Pools by Linear Stability Analysis. Journal of Superconductivity and Novel Magnetism, 23(6), 1185-1188. doi:10.1007/s10948-010-0661-8

Daviaud, F., & Vince, J. M. (1993). Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Physical Review E, 48(6), 4432-4436. doi:10.1103/physreve.48.4432

Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral Methods in Fluid Dynamics. doi:10.1007/978-3-642-84108-8

Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., & Chiffaudel, A. (2001). Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Physics of Fluids, 13(10), 2773-2787. doi:10.1063/1.1398536

Mancho, A. M., & Herrero, H. (2000). Instabilities in a laterally heated liquid layer. Physics of Fluids, 12(5), 1044-1051. doi:10.1063/1.870359

Smith, M. K., & Davis, S. H. (1983). Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 132, 119-144. doi:10.1017/s0022112083001512

Hoyas, S., Mancho, A. M., Herrero, H., Garnier, N., & Chiffaudel, A. (2005). Bénard–Marangoni convection in a differentially heated cylindrical cavity. Physics of Fluids, 17(5), 054104. doi:10.1063/1.1876892

Peng, L., Li, Y.-R., Shi, W.-Y., & Imaishi, N. (2007). Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. International Journal of Heat and Mass Transfer, 50(5-6), 872-880. doi:10.1016/j.ijheatmasstransfer.2006.08.015

Herrero, H., Hoyas, S., Donoso, A., Mancho, A. M., Chacón, J. M., Portugués, R. F., & Yeste, B. (2003). Journal of Scientific Computing, 18(3), 315-328. doi:10.1023/a:1022678124929

Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Thermal convection in a cylindrical annulus heated laterally. Journal of Physics A: Mathematical and General, 35(18), 4067-4083. doi:10.1088/0305-4470/35/18/306

Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Bifurcation diversity of dynamic thermocapillary liquid layers. Physical Review E, 66(5). doi:10.1103/physreve.66.057301

Ganier N. , PhD thesis, http://nicolasgarnier.free.fr/these-garnier.pdf, 2002.

RILEY, R. J., & NEITZEL, G. P. (1998). Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. Journal of Fluid Mechanics, 359, 143-164. doi:10.1017/s0022112097008343

Mancho, A., Herrero, H., & Burguete, J. (1997). Primary instabilities in convective cells due to nonuniform heating. Physical Review E, 56(3), 2916-2923. doi:10.1103/physreve.56.2916

Ezersky, A. B., Garcimartín, A., Burguete, J., Mancini, H. L., & Pérez-García, C. (1993). Hydrothermal waves in Marangoni convection in a cylindrical container. Physical Review E, 47(2), 1126-1131. doi:10.1103/physreve.47.1126

Pardo, R., Herrero, H., & Hoyas, S. (2011). Theoretical study of a Bénard–Marangoni problem. Journal of Mathematical Analysis and Applications, 376(1), 231-246. doi:10.1016/j.jmaa.2010.10.064

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record