Mostrar el registro sencillo del ítem
dc.contributor.author | Torregrosa, A. J. | es_ES |
dc.contributor.author | Hoyas, S | es_ES |
dc.contributor.author | Pérez Quiles, María Jezabel | es_ES |
dc.contributor.author | Mompó Laborda, Juan Manuel | es_ES |
dc.date.accessioned | 2015-09-23T11:22:28Z | |
dc.date.available | 2015-09-23T11:22:28Z | |
dc.date.issued | 2013-02 | |
dc.identifier.issn | 1815-2406 | |
dc.identifier.uri | http://hdl.handle.net/10251/55020 | |
dc.description.abstract | In this article the instabilities appearing in a liquid layer are studied numerically by means of the linear stability method. The fluid is confined in an annular pool and is heated from below with a linear decreasing temperature profile from the inner to the outer wall. The top surface is open to the atmosphere and both lateral walls are adiabatic. Using the Rayleigh number as the only control parameter, many kind of bifurcations appear at moderately low Prandtl numbers and depending on the Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries being formed from competing solutions at codimension-two bifurcation points. | es_ES |
dc.description.sponsorship | The code developed for this article was finished during a visit of S. Hoyas to the Lehrstuhl fur Stromungsmechanik of the University of Erlangen-Nurnberg, funded by the Government of Valencia and the Universitat Politecnica de Valencia. S. Hoyas would like to thank to Prof. Delgado and Dr. Ausmeier for their support and kindness. Last, but not least, S. Hoyas is and always will be, in debt with his PhD advisors, Prof. Herrero, Prof. Mancho and Prof. Pardo. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Global Science Press | es_ES |
dc.relation.ispartof | Communications in Computational Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Thermocapillary convection | es_ES |
dc.subject | Prandtl number | es_ES |
dc.subject | Biot number | es_ES |
dc.subject | Linear stability | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4208/cicp.090611.170212a | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Torregrosa, AJ.; Hoyas, S.; Pérez Quiles, MJ.; Mompó Laborda, JM. (2013). Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects. Communications in Computational Physics. 13(2):428-441. doi:10.4208/cicp.090611.170212a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.4208/cicp.090611.170212a | es_ES |
dc.description.upvformatpinicio | 428 | es_ES |
dc.description.upvformatpfin | 441 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 227715 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Shi, W., Ermakov, M. K., Li, Y.-R., Peng, L., & Imaishi, N. (2009). Influence of Buoyancy Force on Thermocapillary Convection Instability in the Differentially Heated Annular Pools of Silicon Melt. Microgravity Science and Technology, 21(S1), 289-297. doi:10.1007/s12217-009-9118-8 | es_ES |
dc.description.references | SCHWABE, D., ZEBIB, A., & SIM, B.-C. (2003). Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. Journal of Fluid Mechanics, 491, 239-258. doi:10.1017/s002211200300541x | es_ES |
dc.description.references | Pelacho, M. A., & Burguete, J. (1999). Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection. Physical Review E, 59(1), 835-840. doi:10.1103/physreve.59.835 | es_ES |
dc.description.references | Mercier, J. F., & Normand, C. (1996). Buoyant‐thermocapillary instabilities of differentially heated liquid layers. Physics of Fluids, 8(6), 1433-1445. doi:10.1063/1.868920 | es_ES |
dc.description.references | Herrero, H., & Mancho, A. M. (1998). Influence of aspect ratio in convection due to nonuniform heating. Physical Review E, 57(6), 7336-7339. doi:10.1103/physreve.57.7336 | es_ES |
dc.description.references | Shi, W., Liu, X., Li, G., Li, Y.-R., Peng, L., Ermakov, M. K., & Imaishi, N. (2010). Thermocapillary Convection Instability in Shallow Annular Pools by Linear Stability Analysis. Journal of Superconductivity and Novel Magnetism, 23(6), 1185-1188. doi:10.1007/s10948-010-0661-8 | es_ES |
dc.description.references | Daviaud, F., & Vince, J. M. (1993). Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Physical Review E, 48(6), 4432-4436. doi:10.1103/physreve.48.4432 | es_ES |
dc.description.references | Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral Methods in Fluid Dynamics. doi:10.1007/978-3-642-84108-8 | es_ES |
dc.description.references | Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., & Chiffaudel, A. (2001). Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Physics of Fluids, 13(10), 2773-2787. doi:10.1063/1.1398536 | es_ES |
dc.description.references | Mancho, A. M., & Herrero, H. (2000). Instabilities in a laterally heated liquid layer. Physics of Fluids, 12(5), 1044-1051. doi:10.1063/1.870359 | es_ES |
dc.description.references | Smith, M. K., & Davis, S. H. (1983). Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 132, 119-144. doi:10.1017/s0022112083001512 | es_ES |
dc.description.references | Hoyas, S., Mancho, A. M., Herrero, H., Garnier, N., & Chiffaudel, A. (2005). Bénard–Marangoni convection in a differentially heated cylindrical cavity. Physics of Fluids, 17(5), 054104. doi:10.1063/1.1876892 | es_ES |
dc.description.references | Peng, L., Li, Y.-R., Shi, W.-Y., & Imaishi, N. (2007). Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. International Journal of Heat and Mass Transfer, 50(5-6), 872-880. doi:10.1016/j.ijheatmasstransfer.2006.08.015 | es_ES |
dc.description.references | Herrero, H., Hoyas, S., Donoso, A., Mancho, A. M., Chacón, J. M., Portugués, R. F., & Yeste, B. (2003). Journal of Scientific Computing, 18(3), 315-328. doi:10.1023/a:1022678124929 | es_ES |
dc.description.references | Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Thermal convection in a cylindrical annulus heated laterally. Journal of Physics A: Mathematical and General, 35(18), 4067-4083. doi:10.1088/0305-4470/35/18/306 | es_ES |
dc.description.references | Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Bifurcation diversity of dynamic thermocapillary liquid layers. Physical Review E, 66(5). doi:10.1103/physreve.66.057301 | es_ES |
dc.description.references | Ganier N. , PhD thesis, http://nicolasgarnier.free.fr/these-garnier.pdf, 2002. | es_ES |
dc.description.references | RILEY, R. J., & NEITZEL, G. P. (1998). Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. Journal of Fluid Mechanics, 359, 143-164. doi:10.1017/s0022112097008343 | es_ES |
dc.description.references | Mancho, A., Herrero, H., & Burguete, J. (1997). Primary instabilities in convective cells due to nonuniform heating. Physical Review E, 56(3), 2916-2923. doi:10.1103/physreve.56.2916 | es_ES |
dc.description.references | Ezersky, A. B., Garcimartín, A., Burguete, J., Mancini, H. L., & Pérez-García, C. (1993). Hydrothermal waves in Marangoni convection in a cylindrical container. Physical Review E, 47(2), 1126-1131. doi:10.1103/physreve.47.1126 | es_ES |
dc.description.references | Pardo, R., Herrero, H., & Hoyas, S. (2011). Theoretical study of a Bénard–Marangoni problem. Journal of Mathematical Analysis and Applications, 376(1), 231-246. doi:10.1016/j.jmaa.2010.10.064 | es_ES |