- -

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Hoyas, S es_ES
dc.contributor.author Pérez Quiles, María Jezabel es_ES
dc.contributor.author Mompó Laborda, Juan Manuel es_ES
dc.date.accessioned 2015-09-23T11:22:28Z
dc.date.available 2015-09-23T11:22:28Z
dc.date.issued 2013-02
dc.identifier.issn 1815-2406
dc.identifier.uri http://hdl.handle.net/10251/55020
dc.description.abstract In this article the instabilities appearing in a liquid layer are studied numerically by means of the linear stability method. The fluid is confined in an annular pool and is heated from below with a linear decreasing temperature profile from the inner to the outer wall. The top surface is open to the atmosphere and both lateral walls are adiabatic. Using the Rayleigh number as the only control parameter, many kind of bifurcations appear at moderately low Prandtl numbers and depending on the Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries being formed from competing solutions at codimension-two bifurcation points. es_ES
dc.description.sponsorship The code developed for this article was finished during a visit of S. Hoyas to the Lehrstuhl fur Stromungsmechanik of the University of Erlangen-Nurnberg, funded by the Government of Valencia and the Universitat Politecnica de Valencia. S. Hoyas would like to thank to Prof. Delgado and Dr. Ausmeier for their support and kindness. Last, but not least, S. Hoyas is and always will be, in debt with his PhD advisors, Prof. Herrero, Prof. Mancho and Prof. Pardo. en_EN
dc.language Inglés es_ES
dc.publisher Global Science Press es_ES
dc.relation.ispartof Communications in Computational Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Thermocapillary convection es_ES
dc.subject Prandtl number es_ES
dc.subject Biot number es_ES
dc.subject Linear stability es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4208/cicp.090611.170212a
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Hoyas, S.; Pérez Quiles, MJ.; Mompó Laborda, JM. (2013). Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects. Communications in Computational Physics. 13(2):428-441. doi:10.4208/cicp.090611.170212a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.4208/cicp.090611.170212a es_ES
dc.description.upvformatpinicio 428 es_ES
dc.description.upvformatpfin 441 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 227715 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Shi, W., Ermakov, M. K., Li, Y.-R., Peng, L., & Imaishi, N. (2009). Influence of Buoyancy Force on Thermocapillary Convection Instability in the Differentially Heated Annular Pools of Silicon Melt. Microgravity Science and Technology, 21(S1), 289-297. doi:10.1007/s12217-009-9118-8 es_ES
dc.description.references SCHWABE, D., ZEBIB, A., & SIM, B.-C. (2003). Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. Journal of Fluid Mechanics, 491, 239-258. doi:10.1017/s002211200300541x es_ES
dc.description.references Pelacho, M. A., & Burguete, J. (1999). Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection. Physical Review E, 59(1), 835-840. doi:10.1103/physreve.59.835 es_ES
dc.description.references Mercier, J. F., & Normand, C. (1996). Buoyant‐thermocapillary instabilities of differentially heated liquid layers. Physics of Fluids, 8(6), 1433-1445. doi:10.1063/1.868920 es_ES
dc.description.references Herrero, H., & Mancho, A. M. (1998). Influence of aspect ratio in convection due to nonuniform heating. Physical Review E, 57(6), 7336-7339. doi:10.1103/physreve.57.7336 es_ES
dc.description.references Shi, W., Liu, X., Li, G., Li, Y.-R., Peng, L., Ermakov, M. K., & Imaishi, N. (2010). Thermocapillary Convection Instability in Shallow Annular Pools by Linear Stability Analysis. Journal of Superconductivity and Novel Magnetism, 23(6), 1185-1188. doi:10.1007/s10948-010-0661-8 es_ES
dc.description.references Daviaud, F., & Vince, J. M. (1993). Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Physical Review E, 48(6), 4432-4436. doi:10.1103/physreve.48.4432 es_ES
dc.description.references Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral Methods in Fluid Dynamics. doi:10.1007/978-3-642-84108-8 es_ES
dc.description.references Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., & Chiffaudel, A. (2001). Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Physics of Fluids, 13(10), 2773-2787. doi:10.1063/1.1398536 es_ES
dc.description.references Mancho, A. M., & Herrero, H. (2000). Instabilities in a laterally heated liquid layer. Physics of Fluids, 12(5), 1044-1051. doi:10.1063/1.870359 es_ES
dc.description.references Smith, M. K., & Davis, S. H. (1983). Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 132, 119-144. doi:10.1017/s0022112083001512 es_ES
dc.description.references Hoyas, S., Mancho, A. M., Herrero, H., Garnier, N., & Chiffaudel, A. (2005). Bénard–Marangoni convection in a differentially heated cylindrical cavity. Physics of Fluids, 17(5), 054104. doi:10.1063/1.1876892 es_ES
dc.description.references Peng, L., Li, Y.-R., Shi, W.-Y., & Imaishi, N. (2007). Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. International Journal of Heat and Mass Transfer, 50(5-6), 872-880. doi:10.1016/j.ijheatmasstransfer.2006.08.015 es_ES
dc.description.references Herrero, H., Hoyas, S., Donoso, A., Mancho, A. M., Chacón, J. M., Portugués, R. F., & Yeste, B. (2003). Journal of Scientific Computing, 18(3), 315-328. doi:10.1023/a:1022678124929 es_ES
dc.description.references Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Thermal convection in a cylindrical annulus heated laterally. Journal of Physics A: Mathematical and General, 35(18), 4067-4083. doi:10.1088/0305-4470/35/18/306 es_ES
dc.description.references Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Bifurcation diversity of dynamic thermocapillary liquid layers. Physical Review E, 66(5). doi:10.1103/physreve.66.057301 es_ES
dc.description.references Ganier N. , PhD thesis, http://nicolasgarnier.free.fr/these-garnier.pdf, 2002. es_ES
dc.description.references RILEY, R. J., & NEITZEL, G. P. (1998). Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. Journal of Fluid Mechanics, 359, 143-164. doi:10.1017/s0022112097008343 es_ES
dc.description.references Mancho, A., Herrero, H., & Burguete, J. (1997). Primary instabilities in convective cells due to nonuniform heating. Physical Review E, 56(3), 2916-2923. doi:10.1103/physreve.56.2916 es_ES
dc.description.references Ezersky, A. B., Garcimartín, A., Burguete, J., Mancini, H. L., & Pérez-García, C. (1993). Hydrothermal waves in Marangoni convection in a cylindrical container. Physical Review E, 47(2), 1126-1131. doi:10.1103/physreve.47.1126 es_ES
dc.description.references Pardo, R., Herrero, H., & Hoyas, S. (2011). Theoretical study of a Bénard–Marangoni problem. Journal of Mathematical Analysis and Applications, 376(1), 231-246. doi:10.1016/j.jmaa.2010.10.064 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem