Aronszajn, N., Gagliardo, E.: Interpolation spaces and interpolation methods. Ann. Mat. Pura. Appl. 68, 51–118 (1965)
Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Canad. J. Math. 7, 289–305 (1955)
Brudnyi, Yu.A., Krugljak, N.Ya.: Interpolation functors and interpolation spaces $$I$$ I . North-Holland, Amsterdam (1991)
[+]
Aronszajn, N., Gagliardo, E.: Interpolation spaces and interpolation methods. Ann. Mat. Pura. Appl. 68, 51–118 (1965)
Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Canad. J. Math. 7, 289–305 (1955)
Brudnyi, Yu.A., Krugljak, N.Ya.: Interpolation functors and interpolation spaces $$I$$ I . North-Holland, Amsterdam (1991)
Curbera, G.P.: Operators into $$L^1$$ L 1 of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992)
Curbera, G.P., Ricker, W.J.: The Fatou property in $$p$$ p -convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007)
Delgado, O.: Banach function subspaces of $$L^1$$ L 1 of a vector measure and related Orlicz spaces. Indag. Math. 15(4), 485–495 (2004)
Diestel, J., Jr., Uhl, J.J.: Vector measures, Amer. Math. Soc. Surveys 15, Providence, R.I. (1977)
Fernández, A., Mayoral, F., Naranjo, F., Sánchez-Pérez, E.A.: Spaces of $$p$$ p -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)
Ferrando, I., Rodríguez, J.: The weak topology on $$L_p$$ L p of a vector measure. Topol. Appl. 155, 1439–1444 (2008)
Ferrando, I., Sánchez Pérez, E.A.: Tensor product representation of the (pre)dual of the $$L_p$$ L p -space of a vector measure. J. Aust. Math. Soc. 87, 211–225 (2009)
Galaz-Fontes, F.: The dual space of $$L^p$$ L p of a vector measure. Positivity 14(4), 715–729 (2010)
Kamińska, A.: Indices, convexity and concavity in Musielak-Orlicz spaces, dedicated to Julian Musielak. Funct. Approx. Comment. Math. 26, 67–84 (1998)
Kantorovich, L.V., Akilov, G.P.: Functional analysis, 2nd edn. Pergamon Press, New York (1982)
Krein, S.G., Petunin, Yu.I., Semenov, E.M.: Interpolation of linear operators. In: Translations of mathematical monographs, 54. American Mathematical Society, Providence, R.I., (1982)
Lewis, D.R.: Integration with respect to vector measures. Pacific. J. Math. 33, 157–165 (1970)
Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 583–599 (1973)
Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)
Lozanovskii, G.Ya.: On some Banach lattices, (Russian). Sibirsk. Mat. Z. 10, 419–430 (1969)
Musielak, J.: Orlicz spaces and modular spaces. In: Lecture Notes in Math. 1034, Springer-Verlag, Berlin (1983)
Okada, S.: The dual space of $$L^1(\mu )$$ L 1 ( μ ) of a vector measure $$\mu $$ μ . J. Math. Anal. Appl. 177, 583–599 (1993)
Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces, operator theory. Adv. Appl., vol. 180, Birkhäuser, Basel (2008)
Rao, M.M., Zen, Z.D.: Applications of Orlicz spaces. Marcel Dekker, Inc., New York (2002)
Rivera, M.J.: Orlicz spaces of integrable functions with respect to vector-valued measures. Rocky Mt. J. Math. 38(2), 619–637 (2008)
Sánchez Pérez, E.A.: Compactness arguments for spaces of $$p$$ p -integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Ill. J. Math. 45(3), 907–923 (2001)
Sánchez Pérez, E.A.: Vector measure duality and tensor product representation of $$L_p$$ L p spaces of vector measures. Proc. Amer. Math. Soc. 132, 3319–3326 (2004)
Zaanen, A.C.: Integration. North Holland, Amsterdam (1967)
[-]