Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049
Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086
Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047
[+]
Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049
Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086
Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047
Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536
Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). Multi-Point Iterative Methods for Systems of Nonlinear Equations. Lecture Notes in Control and Information Sciences, 259-267. doi:10.1007/978-3-642-02894-6_25
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). Iterative methods for use with nonlinear discrete algebraic models. Mathematical and Computer Modelling, 52(7-8), 1251-1257. doi:10.1016/j.mcm.2010.02.028
Curry, J. H., Garnett, L., & Sullivan, D. (1983). On the iteration of a rational function: Computer experiments with Newton’s method. Communications in Mathematical Physics, 91(2), 267-277. doi:10.1007/bf01211162
Douady, A., & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. Annales scientifiques de l’École normale supérieure, 18(2), 287-343. doi:10.24033/asens.1491
Frontini, M., & Sormani, E. (2003). Some variant of Newton’s method with third-order convergence. Applied Mathematics and Computation, 140(2-3), 419-426. doi:10.1016/s0096-3003(02)00238-2
Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017
Özban, A. . (2004). Some new variants of Newton’s method. Applied Mathematics Letters, 17(6), 677-682. doi:10.1016/s0893-9659(04)90104-8
PLAZA, S. (2001). CONJUGACIES CLASSES OF SOME NUMERICAL METHODS. Proyecciones (Antofagasta), 20(1). doi:10.4067/s0716-09172001000100001
Plaza, S., & Romero, N. (2011). Attracting cycles for the relaxed Newton’s method. Journal of Computational and Applied Mathematics, 235(10), 3238-3244. doi:10.1016/j.cam.2011.01.010
F.A. Potra and V. Pták,Nondiscrete Introduction and Iterative Processes, Research Notes in Mathematics Vol. 103, Pitman, Boston, MA, 1984.
[-]