Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vindel Cañas, Pura | es_ES |
dc.date.accessioned | 2015-09-29T12:20:31Z | |
dc.date.available | 2015-09-29T12:20:31Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/55273 | |
dc.description.abstract | In this paper, we analyse the dynamical behaviour of the operators associated with multi-point interpolation iterative methods and frozen derivative methods, for solving nonlinear equations, applied on second-degree complex polynomials. We obtain that, in both cases, the Julia set is connected and separates the basins of attraction of the roots of the polynomial. Moreover, the Julia set of the operator associated with multi-point interpolation methods is the same as the Newton operator, although it is more complicated for the frozen derivative operator. We explain these differences by obtaining the conjugacy function of each method and by showing that the operators associated with Newton's method and multi-point interpolation methods are both conjugate to powers of z. | es_ES |
dc.description.sponsorship | The authors thank Professors X. Jarque and A. Garijo for their help. The authors also thank the referees for their valuable comments and suggestions that have improved the content of this paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Invetigacion, Universitat Politecnica de Valencia, PAID-06-2010-2285 | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis Ltd | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Complex dynamics | es_ES |
dc.subject | Conjugacy map | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Study of the dynamics of third-order iterative methods on quadratic polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2012.687446 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-2010-2285/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel Cañas, P. (2012). Study of the dynamics of third-order iterative methods on quadratic polynomials. International Journal of Computer Mathematics. 89(13):1826-1836. https://doi.org/10.1080/00207160.2012.687446 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2012.687446 | es_ES |
dc.description.upvformatpinicio | 1826 | es_ES |
dc.description.upvformatpfin | 1836 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 89 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.senia | 237512 | es_ES |
dc.identifier.eissn | 1029-0265 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049 | es_ES |
dc.description.references | Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086 | es_ES |
dc.description.references | Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047 | es_ES |
dc.description.references | Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). Multi-Point Iterative Methods for Systems of Nonlinear Equations. Lecture Notes in Control and Information Sciences, 259-267. doi:10.1007/978-3-642-02894-6_25 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). Iterative methods for use with nonlinear discrete algebraic models. Mathematical and Computer Modelling, 52(7-8), 1251-1257. doi:10.1016/j.mcm.2010.02.028 | es_ES |
dc.description.references | Curry, J. H., Garnett, L., & Sullivan, D. (1983). On the iteration of a rational function: Computer experiments with Newton’s method. Communications in Mathematical Physics, 91(2), 267-277. doi:10.1007/bf01211162 | es_ES |
dc.description.references | Douady, A., & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. Annales scientifiques de l’École normale supérieure, 18(2), 287-343. doi:10.24033/asens.1491 | es_ES |
dc.description.references | Frontini, M., & Sormani, E. (2003). Some variant of Newton’s method with third-order convergence. Applied Mathematics and Computation, 140(2-3), 419-426. doi:10.1016/s0096-3003(02)00238-2 | es_ES |
dc.description.references | Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017 | es_ES |
dc.description.references | Özban, A. . (2004). Some new variants of Newton’s method. Applied Mathematics Letters, 17(6), 677-682. doi:10.1016/s0893-9659(04)90104-8 | es_ES |
dc.description.references | PLAZA, S. (2001). CONJUGACIES CLASSES OF SOME NUMERICAL METHODS. Proyecciones (Antofagasta), 20(1). doi:10.4067/s0716-09172001000100001 | es_ES |
dc.description.references | Plaza, S., & Romero, N. (2011). Attracting cycles for the relaxed Newton’s method. Journal of Computational and Applied Mathematics, 235(10), 3238-3244. doi:10.1016/j.cam.2011.01.010 | es_ES |
dc.description.references | F.A. Potra and V. Pták,Nondiscrete Introduction and Iterative Processes, Research Notes in Mathematics Vol. 103, Pitman, Boston, MA, 1984. | es_ES |