- -

Artificial satellites preliminary orbit determination by the modified high-order Gauss method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Artificial satellites preliminary orbit determination by the modified high-order Gauss method

Show full item record

Arroyo Martínez, V.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2012). Artificial satellites preliminary orbit determination by the modified high-order Gauss method. International Journal of Computer Mathematics. 89(3):347-356. https://doi.org/10.1080/00207160.2011.560266

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55276

Files in this item

Item Metadata

Title: Artificial satellites preliminary orbit determination by the modified high-order Gauss method
Author: Arroyo Martínez, Víctor Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Penkova Vassileva, María
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
In recent years, high-order methods have shown to be very useful in many practical applications, in which nonlinear systems arise. In this case, a classical method of positional astronomy have been modified in order to ...[+]
Subjects: Orbit determination , Gauss method , Nonlinear systems , Newton's method , Order of convergence , Efficiency index
Copyrigths: Cerrado
Source:
International Journal of Computer Mathematics. (issn: 0020-7160 ) (eissn: 1029-0265 )
DOI: 10.1080/00207160.2011.560266
Publisher:
Taylor & Francis Ltd
Publisher version: http://dx.doi.org/10.1080/00207160.2011.560266
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/
Thanks:
The authors would like to thank the referees for their valuable comments and suggestions that have improved the content of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2010-18539.
Type: Artículo

References

Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z

Danchick, R. (2008). Gauss meets Newton again: How to make Gauss orbit determination from two position vectors more efficient and robust with Newton–Raphson iterations. Applied Mathematics and Computation, 195(2), 364-375. doi:10.1016/j.amc.2007.03.053

Escobal, P. R. 1975. “Methods of Orbit Determination”. Huntington, NY: Robert E. Krieger Publishing Company. [+]
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z

Danchick, R. (2008). Gauss meets Newton again: How to make Gauss orbit determination from two position vectors more efficient and robust with Newton–Raphson iterations. Applied Mathematics and Computation, 195(2), 364-375. doi:10.1016/j.amc.2007.03.053

Escobal, P. R. 1975. “Methods of Orbit Determination”. Huntington, NY: Robert E. Krieger Publishing Company.

Gronchi, G. F. (2009). Multiple solutions in preliminary orbit determination from three observations. Celestial Mechanics and Dynamical Astronomy, 103(4), 301-326. doi:10.1007/s10569-009-9201-x

Gronchi, G. F., Dimare, L., & Milani, A. (2010). Orbit determination with the two-body integrals. Celestial Mechanics and Dynamical Astronomy, 107(3), 299-318. doi:10.1007/s10569-010-9271-9

Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8

Traub, J. F. 1982. “Iterative Methods for the Solution of Equations”. New York: Chelsea Publishing Company.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record