- -

Period-doubling bifurcations in the family of Chebyshev-Halley type methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Period-doubling bifurcations in the family of Chebyshev-Halley type methods

Mostrar el registro completo del ítem

Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel Cañas, P. (2013). Period-doubling bifurcations in the family of Chebyshev-Halley type methods. International Journal of Computer Mathematics. 90(10):2061-2071. doi:10.1080/00207160.2012.745518

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55277

Ficheros en el ítem

Metadatos del ítem

Título: Period-doubling bifurcations in the family of Chebyshev-Halley type methods
Autor: Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Vindel Cañas, Pura
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
The choice of a member of a parametric family of iterative methods is not always easy. The family of Chebyshev-Halley schemes is a good example of it. The analysis of bifurcation points of this family allows us to define ...[+]
Palabras clave: Numerical methods , Chebyshev-Halley methods , Bifurcations , Dynamics of numerical method , Period-doubling bifurcation
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Computer Mathematics. (issn: 0020-7160 ) (eissn: 1029-0265 )
DOI: 10.1080/00207160.2012.745518
Editorial:
Taylor & Francis Ltd
Versión del editor: http://dx.doi.org/10.1080/00207160.2012.745518
Tipo: Artículo

References

Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049

Amat, S., Busquier, S., & Plaza, S. (2007). On the dynamics of a family of third-order iterative functions. The ANZIAM Journal, 48(3), 343-359. doi:10.1017/s1446181100003539

Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086 [+]
Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049

Amat, S., Busquier, S., & Plaza, S. (2007). On the dynamics of a family of third-order iterative functions. The ANZIAM Journal, 48(3), 343-359. doi:10.1017/s1446181100003539

Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086

Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6

Devaney, R. L. (1999). The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence. The American Mathematical Monthly, 106(4), 289. doi:10.2307/2589552

Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017

Honorato, G., Plaza, S., & Romero, N. (2011). Dynamics of a higher-order family of iterative methods. Journal of Complexity, 27(2), 221-229. doi:10.1016/j.jco.2010.10.005

Kneisl, K. (2001). Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(2), 359-370. doi:10.1063/1.1368137

Plaza, S., & Romero, N. (2011). Attracting cycles for the relaxed Newton’s method. Journal of Computational and Applied Mathematics, 235(10), 3238-3244. doi:10.1016/j.cam.2011.01.010

Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem