- -

Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Nguyen, Quoc-Hung es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.date.accessioned 2015-09-30T15:56:02Z
dc.date.available 2015-09-30T15:56:02Z
dc.date.issued 2014-01-27
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/55359
dc.description Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. es_ES
dc.description.abstract Rectification in nanopores is usually achieved by a fixed asymmetry in the pore geometry and charge distribution. We show here that nanoparticle blocking of a cylindrical pore induces rectifying properties that can support significant net currents with zero time-average potentials. To describe experimentally this effect, the steady-state current-voltage curves of a single nanopore are obtained for different charge states and relative sizes of the pore and the charged nanoparticles, which are present only on one side. The rectification phenomena observed can find applications in the area of nanofluidics and involves physical concepts that are also characteristic of the blocking of protein ion channels by ionic drugs. © 2014 AIP Publishing LLC. es_ES
dc.description.sponsorship M.A., S.N., Q.H.N., and W. E. acknowledge the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC. P. R. and S. M. acknowledge the Ministry of Economy and Competitiveness (project MAT2012-32084) and the Generalitat Valenciana (project PROMETEO/GV/0069). The authors thank Professor Christina Trautmann from GSI for support with the heavy ion irradiation experiments. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanoparticles es_ES
dc.subject Rectification es_ES
dc.subject Nanoporous materials es_ES
dc.subject Charged currents es_ES
dc.subject Ion channels es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4863511
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ali, M.; Ramirez Hoyos, P.; Nasir, S.; Nguyen, Q.; Ensinger, W.; Mafé, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters. 104(4):437031-437034. https://doi.org/10.1063/1.4863511 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4863511 es_ES
dc.description.upvformatpinicio 437031 es_ES
dc.description.upvformatpfin 437034 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 104 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 281308 es_ES
dc.identifier.eissn 1077-3118
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana
dc.description.references Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005 es_ES
dc.description.references Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477-1481. doi:10.1103/physrevlett.71.1477 es_ES
dc.description.references Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81(1), 387-442. doi:10.1103/revmodphys.81.387 es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 es_ES
dc.description.references Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 es_ES
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471 es_ES
dc.description.references Guan, W., Fan, R., & Reed, M. A. (2011). Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2(1). doi:10.1038/ncomms1514 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references Yusko, E. C., An, R., & Mayer, M. (2009). Electroosmotic Flow Can Generate Ion Current Rectification in Nano- and Micropores. ACS Nano, 4(1), 477-487. doi:10.1021/nn9013438 es_ES
dc.description.references Lee, S., Zhang, Y., White, H. S., Harrell, C. C., & Martin, C. R. (2004). Electrophoretic Capture and Detection of Nanoparticles at the Opening of a Membrane Pore Using Scanning Electrochemical Microscopy. Analytical Chemistry, 76(20), 6108-6115. doi:10.1021/ac049147p es_ES
dc.description.references White, R. J., & White, H. S. (2007). Influence of Electrophoresis Waveforms in Determining Stochastic Nanoparticle Capture Rates and Detection Sensitivity. Analytical Chemistry, 79(16), 6334-6340. doi:10.1021/ac070610i es_ES
dc.description.references Nestorovich, E. M., Danelon, C., Winterhalter, M., & Bezrukov, S. M. (2002). Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proceedings of the National Academy of Sciences, 99(15), 9789-9794. doi:10.1073/pnas.152206799 es_ES
dc.description.references Mafé, S., Ramı́rez, P., & Alcaraz, A. (2003). Simple molecular model for the binding of antibiotic molecules to bacterial ion channels. The Journal of Chemical Physics, 119(15), 8097-8102. doi:10.1063/1.1606438 es_ES
dc.description.references Karginov, V. A., Nestorovich, E. M., Moayeri, M., Leppla, S. H., & Bezrukov, S. M. (2005). Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proceedings of the National Academy of Sciences, 102(42), 15075-15080. doi:10.1073/pnas.0507488102 es_ES
dc.description.references Aguilella-Arzo, M., Cervera, J., Ramírez, P., & Mafé, S. (2006). Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration. Physical Review E, 73(4). doi:10.1103/physreve.73.041914 es_ES
dc.description.references Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+ Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r es_ES
dc.description.references Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740 es_ES
dc.description.references Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712 es_ES
dc.description.references Blackiston, D. J., McLaughlin, K. A., & Levin, M. (2009). Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle, 8(21), 3527-3536. doi:10.4161/cc.8.21.9888 es_ES
dc.description.references Levin, M., & Stevenson, C. G. (2012). Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 14(1), 295-323. doi:10.1146/annurev-bioeng-071811-150114 es_ES
dc.description.references Davenport, M., Healy, K., Pevarnik, M., Teslich, N., Cabrini, S., Morrison, A. P., … Létant, S. E. (2012). The Role of Pore Geometry in Single Nanoparticle Detection. ACS Nano, 6(9), 8366-8380. doi:10.1021/nn303126n es_ES
dc.description.references Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503 es_ES
dc.description.references Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2009). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160-165. doi:10.1038/nnano.2009.379 es_ES
dc.description.references Macrae, M. X., Blake, S., Mayer, M., & Yang, J. (2010). Nanoscale Ionic Diodes with Tunable and Switchable Rectifying Behavior. Journal of the American Chemical Society, 132(6), 1766-1767. doi:10.1021/ja909876h es_ES
dc.description.references Tagliazucchi, M., Rabin, Y., & Szleifer, I. (2013). Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes. ACS Nano, 7(10), 9085-9097. doi:10.1021/nn403686s es_ES
dc.description.references Tsutsui, M., Maeda, Y., He, Y., Hongo, S., Ryuzaki, S., Kawano, S., … Taniguchi, M. (2013). Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore. Applied Physics Letters, 103(1), 013108. doi:10.1063/1.4813084 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 es_ES
dc.description.references Kalman, E., Healy, K., & Siwy, Z. S. (2007). Tuning ion current rectification in asymmetric nanopores by signal mixing. Europhysics Letters (EPL), 78(2), 28002. doi:10.1209/0295-5075/78/28002 es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem