- -

Accurate characterization of single track-etched, conical nanopores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accurate characterization of single track-etched, conical nanopores

Mostrar el registro completo del ítem

Apel, PY.; Ramirez Hoyos, P.; Blonskaya, IV.; Orelovitch, OL.; Sartowska, BA. (2014). Accurate characterization of single track-etched, conical nanopores. Physical Chemistry Chemical Physics. 16(29):15214-15223. https://doi.org/10.1039/c4cp01686f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55361

Ficheros en el ítem

Metadatos del ítem

Título: Accurate characterization of single track-etched, conical nanopores
Autor: Apel, Pavel Yu Ramirez Hoyos, Patricio Blonskaya, Irina V. Orelovitch, Oleg L. Sartowska, Bozena A.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
Single track-etched conical nanopores in polymer foils have attracted considerable attention in recent years due to their potential applications in biosensing, nanofluidics, information processing, and other fields. The ...[+]
Palabras clave: Ionic current rectification , Synthetic nanopores , Shaped nanopores , Transport , Membrane , Technology , Polymers , Currents , Diodes , Size
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 ) (eissn: 1463-9084 )
DOI: 10.1039/c4cp01686f
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c4cp01686f
Código del Proyecto:
info:eu-repo/grantAgreement/JINR//JINR 04-5-1076-2009%2F2014/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/
info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/
info:eu-repo/grantAgreement/JINR//04-5-1076-2009%2F2014/RU/Radiation Effects and Physical Basis of Nanotechnology, Radioanalytical and Radioisotope Investigations at the FLNR Accelerators/
Agradecimientos:
The authors are grateful to the Material Research group (GSI Darmstadt) for providing irradiated samples. The authors thank O. M. Ivanov for the irradiation of the polymer foils with accelerated ions. The help with SEM ...[+]
Tipo: Artículo

References

Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099g

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 [+]
Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099g

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875

Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839

Howorka, S., & Siwy, Z. (2009). Nanopore analytics: sensing of single molecules. Chemical Society Reviews, 38(8), 2360. doi:10.1039/b813796j

Wanunu, M. (2012). Nanopores: A journey towards DNA sequencing. Physics of Life Reviews, 9(2), 125-158. doi:10.1016/j.plrev.2012.05.010

Stroeve, P., & Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 29(6), 259-266. doi:10.1016/j.tibtech.2011.02.002

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Kocer, A., Tauk, L., & Déjardin, P. (2012). Nanopore sensors: From hybrid to abiotic systems. Biosensors and Bioelectronics, 38(1), 1-10. doi:10.1016/j.bios.2012.05.013

R. L. Fleischer , P. B.Price and R. M.Walker , Nuclear Tracks in Solids , University of California Press , Berkeley, CA , 1975

Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008

Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4

Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3

Mara, A., Siwy, Z., Trautmann, C., Wan, J., & Kamme, F. (2004). An Asymmetric Polymer Nanopore for Single Molecule Detection. Nano Letters, 4(3), 497-501. doi:10.1021/nl035141o

Schiedt, B., Healy, K., Morrison, A. P., Neumann, R., & Siwy, Z. (2005). Transport of ions and biomolecules through single asymmetric nanopores in polymer films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236(1-4), 109-116. doi:10.1016/j.nimb.2005.03.265

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Siwy, Z. S., Powell, M. R., Petrov, A., Kalman, E., Trautmann, C., & Eisenberg, R. S. (2006). Calcium-Induced Voltage Gating in Single Conical Nanopores. Nano Letters, 6(8), 1729-1734. doi:10.1021/nl061114x

Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c

Harrell, C. C., Choi, Y., Horne, L. P., Baker, L. A., Siwy, Z. S., & Martin, C. R. (2006). Resistive-Pulse DNA Detection with a Conical Nanopore Sensor†. Langmuir, 22(25), 10837-10843. doi:10.1021/la061234k

Wang, X., Xue, J., Wang, L., Guo, W., Zhang, W., Wang, Y., … Ouyang, Q. (2007). How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal of Physics D: Applied Physics, 40(22), 7077-7084. doi:10.1088/0022-3727/40/22/032

Liu, Q., Wang, Y., Guo, W., Ji, H., Xue, J., & Ouyang, Q. (2007). Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 75(5). doi:10.1103/physreve.75.051201

Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c

Wharton, J. E., Jin, P., Sexton, L. T., Horne, L. P., Sherrill, S. A., Mino, W. K., & Martin, C. R. (2007). A Method for Reproducibly Preparing Synthetic Nanopores for Resistive-Pulse Biosensors. Small, 3(8), 1424-1430. doi:10.1002/smll.200700106

Vlassiouk, I., Smirnov, S., & Siwy, Z. (2008). Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions. ACS Nano, 2(8), 1589-1602. doi:10.1021/nn800306u

Guo, W., Xue, J. M., Zhang, W. M., Zou, X. Q., & Wang, Y. G. (2008). Electrolytic conduction properties of single conical nanopores. Radiation Measurements, 43, S623-S626. doi:10.1016/j.radmeas.2008.03.067

Kosińska, I. D., Goychuk, I., Kostur, M., Schmid, G., & Hänggi, P. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3). doi:10.1103/physreve.77.031131

Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707

Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p

Ali, M., Bayer, V., Schiedt, B., Neumann, R., & Ensinger, W. (2008). Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology, 19(48), 485711. doi:10.1088/0957-4484/19/48/485711

Kovarik, M. L., Zhou, K., & Jacobson, S. C. (2009). Effect of Conical Nanopore Diameter on Ion Current Rectification. The Journal of Physical Chemistry B, 113(49), 15960-15966. doi:10.1021/jp9076189

Fink, D., Vacík, J., Hnatowicz, V., Muñoz, G. H., Alfonta, L., & Klinkovich, I. (2010). Funnel-type etched ion tracks in polymers. Radiation Effects and Defects in Solids, 165(5), 343-361. doi:10.1080/10420151003743020

Vlassiouk, I., Kozel, T. R., & Siwy, Z. S. (2009). Biosensing with Nanofluidic Diodes. Journal of the American Chemical Society, 131(23), 8211-8220. doi:10.1021/ja901120f

Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Mukaibo, H., Horne, L. P., Park, D., & Martin, C. R. (2009). Controlling the Length of Conical Pores Etched in Ion-Tracked Poly(ethylene terephthalate) Membranes. Small, 5(21), 2474-2479. doi:10.1002/smll.200900810

Sexton, L. T., Mukaibo, H., Katira, P., Hess, H., Sherrill, S. A., Horne, L. P., & Martin, C. R. (2010). An Adsorption-Based Model for Pulse Duration in Resistive-Pulse Protein Sensing. Journal of the American Chemical Society, 132(19), 6755-6763. doi:10.1021/ja100693x

Innes, L., Powell, M. R., Vlassiouk, I., Martens, C., & Siwy, Z. S. (2010). Precipitation-Induced Voltage-Dependent Ion Current Fluctuations in Conical Nanopores. The Journal of Physical Chemistry C, 114(18), 8126-8134. doi:10.1021/jp910815p

Kubeil, C., & Bund, A. (2011). The Role of Nanopore Geometry for the Rectification of Ionic Currents. The Journal of Physical Chemistry C, 115(16), 7866-7873. doi:10.1021/jp111377h

Powell, M. R., Sa, N., Davenport, M., Healy, K., Vlassiouk, I., Létant, S. E., … Siwy, Z. S. (2011). Noise Properties of Rectifying Nanopores. The Journal of Physical Chemistry C, 115(17), 8775-8783. doi:10.1021/jp2016038

Wang, L., Sun, L., Wang, C., Chen, L., Cao, L., Hu, G., … Wang, Y. (2011). Nanofluidic Pulser Based on Polymer Conical Nanopores. The Journal of Physical Chemistry C, 115(46), 22736-22741. doi:10.1021/jp2047344

Zhang, B., Ai, Y., Liu, J., Joo, S. W., & Qian, S. (2011). Polarization Effect of a Dielectric Membrane on the Ionic Current Rectification in a Conical Nanopore. The Journal of Physical Chemistry C, 115(50), 24951-24959. doi:10.1021/jp2089388

Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P., & Sartowska, B. A. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology, 22(17), 175302. doi:10.1088/0957-4484/22/17/175302

Pietschmann, J.-F., Wolfram, M.-T., Burger, M., Trautmann, C., Nguyen, G., Pevarnik, M., … Siwy, Z. (2013). Rectification properties of conically shaped nanopores: consequences of miniaturization. Physical Chemistry Chemical Physics, 15(39), 16917. doi:10.1039/c3cp53105h

Gillespie, D., Boda, D., He, Y., Apel, P., & Siwy, Z. S. (2008). Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing. Biophysical Journal, 95(2), 609-619. doi:10.1529/biophysj.107.127985

Kalman, E. B., Vlassiouk, I., & Siwy, Z. S. (2008). Nanofluidic Bipolar Transistors. Advanced Materials, 20(2), 293-297. doi:10.1002/adma.200701867

Davenport, M., Rodriguez, A., Shea, K. J., & Siwy, Z. S. (2009). Squeezing Ionic Liquids through Nanopores. Nano Letters, 9(5), 2125-2128. doi:10.1021/nl900630z

Hou, X., Yang, F., Li, L., Song, Y., Jiang, L., & Zhu, D. (2010). A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 132(33), 11736-11742. doi:10.1021/ja1045082

Zhang, H., Tian, Y., & Jiang, L. (2013). From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chemical Communications, 49(86), 10048. doi:10.1039/c3cc45526b

Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1

Albrecht, D., Armbruster, P., Spohr, R., Roth, M., Schaupert, K., & Stuhrmann, H. (1985). Investigation of heavy ion produced defect structures in insulators by small angle scattering. Applied Physics A Solids and Surfaces, 37(1), 37-46. doi:10.1007/bf00617867

Saleh, S. A., & Eyal, Y. (2005). Morphology of track cores and halos created by swift uranium ions in polycarbonate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236(1-4), 81-87. doi:10.1016/j.nimb.2005.03.258

Apel, P. Y., Blonskaya, I. ., Oganessian, V. ., Orelovitch, O. ., & Trautmann, C. (2001). Morphology of latent and etched heavy ion tracks in radiation resistant polymers polyimide and poly(ethylene naphthalate). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 185(1-4), 216-221. doi:10.1016/s0168-583x(01)00967-3

Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503

J. F. Ziegler , J. P.Biersack and U.Littmark , The Stopping and Range of Ions in Solids , Pergamon , New York , 1985 , Free SRIM software is available from the website, http://www.srim.org/

Apel, P. Y., Blonskaya, I. ., Didyk, A. Y., Dmitriev, S. ., Orelovitch, O. ., Root, D., … Vutsadakis, V. . (2001). Surfactant-enhanced control of track-etch pore morphology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 179(1), 55-62. doi:10.1016/s0168-583x(00)00691-1

Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119

Ho, C., Qiao, R., Heng, J. B., Chatterjee, A., Timp, R. J., Aluru, N. R., & Timp, G. (2005). Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences, 102(30), 10445-10450. doi:10.1073/pnas.0500796102

Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811

Liebes, Y., Drozdov, M., Avital, Y. Y., Kauffmann, Y., Rapaport, H., Kaplan, W. D., & Ashkenasy, N. (2010). Reconstructing solid state nanopore shape from electrical measurements. Applied Physics Letters, 97(22), 223105. doi:10.1063/1.3521411

Frament, C. M., & Dwyer, J. R. (2012). Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. The Journal of Physical Chemistry C, 116(44), 23315-23321. doi:10.1021/jp305381j

Frament, C. M., Bandara, N., & Dwyer, J. R. (2013). Nanopore Surface Coating Delivers Nanopore Size and Shape through Conductance-Based Sizing. ACS Applied Materials & Interfaces, 5(19), 9330-9337. doi:10.1021/am4026455

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem