Mostrar el registro sencillo del ítem
dc.contributor.author | Apel, Pavel Yu | es_ES |
dc.contributor.author | Ramirez Hoyos, Patricio | es_ES |
dc.contributor.author | Blonskaya, Irina V. | es_ES |
dc.contributor.author | Orelovitch, Oleg L. | es_ES |
dc.contributor.author | Sartowska, Bozena A. | es_ES |
dc.date.accessioned | 2015-09-30T16:34:32Z | |
dc.date.available | 2015-09-30T16:34:32Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1463-9076 | |
dc.identifier.uri | http://hdl.handle.net/10251/55361 | |
dc.description.abstract | Single track-etched conical nanopores in polymer foils have attracted considerable attention in recent years due to their potential applications in biosensing, nanofluidics, information processing, and other fields. The performance of a nanopore critically depends on the size and shape of its narrowest, nanometer-sized region. In this paper, we reconstructed the profiles of both doubly-conical and conical pores, using an algorithm based on conductometric measurements performed in the course of etching, coupled with SEM data. We showed that pore constriction deviates from the conical shape, and the deviation depends on the energy loss of the particle that produced the track. Funnel-like profiles of tracks of four ions with different atomic numbers were derived from experimental data. The simulations, using a Poisson–Nernst–Planck model, demonstrated that the ion current rectification properties of the funnel-shaped asymmetrical pores significantly differ from those of conical ones if the tip radius of the pore is smaller than 10 nm. Upon subjecting to further etching, the pores gradually approach the ‘‘ideal’’ conical geometry, and the ion transport properties of these two pore configurations become almost indistinguishable. | es_ES |
dc.description.sponsorship | The authors are grateful to the Material Research group (GSI Darmstadt) for providing irradiated samples. The authors thank O. M. Ivanov for the irradiation of the polymer foils with accelerated ions. The help with SEM imaging provided by N. E. Lizunov is also appreciated. P. R. acknowledges financial support from the Generalitat Valenciana (project PROMETEO/GV/0069), Ministry of Science and Innovation of Spain, Materials Program (project MAT2012-32084), and FEDER. This research has been partially supported by the Cooperation Program between Polish scientific institutions and JINR (theme 04-5-1076-2009/2014, regulation number 62 of February 11, 2013). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ionic current rectification | es_ES |
dc.subject | Synthetic nanopores | es_ES |
dc.subject | Shaped nanopores | es_ES |
dc.subject | Transport | es_ES |
dc.subject | Membrane | es_ES |
dc.subject | Technology | es_ES |
dc.subject | Polymers | es_ES |
dc.subject | Currents | es_ES |
dc.subject | Diodes | es_ES |
dc.subject | Size | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Accurate characterization of single track-etched, conical nanopores | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c4cp01686f | |
dc.relation.projectID | info:eu-repo/grantAgreement/JINR//JINR 04-5-1076-2009%2F2014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JINR//04-5-1076-2009%2F2014/RU/Radiation Effects and Physical Basis of Nanotechnology, Radioanalytical and Radioisotope Investigations at the FLNR Accelerators/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Apel, PY.; Ramirez Hoyos, P.; Blonskaya, IV.; Orelovitch, OL.; Sartowska, BA. (2014). Accurate characterization of single track-etched, conical nanopores. Physical Chemistry Chemical Physics. 16(29):15214-15223. https://doi.org/10.1039/c4cp01686f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c4cp01686f | es_ES |
dc.description.upvformatpinicio | 15214 | es_ES |
dc.description.upvformatpfin | 15223 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 29 | es_ES |
dc.relation.senia | 281310 | es_ES |
dc.identifier.eissn | 1463-9084 | |
dc.contributor.funder | Joint Institute for Nuclear Research | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099g | es_ES |
dc.description.references | Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 | es_ES |
dc.description.references | Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 | es_ES |
dc.description.references | Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839 | es_ES |
dc.description.references | Howorka, S., & Siwy, Z. (2009). Nanopore analytics: sensing of single molecules. Chemical Society Reviews, 38(8), 2360. doi:10.1039/b813796j | es_ES |
dc.description.references | Wanunu, M. (2012). Nanopores: A journey towards DNA sequencing. Physics of Life Reviews, 9(2), 125-158. doi:10.1016/j.plrev.2012.05.010 | es_ES |
dc.description.references | Stroeve, P., & Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 29(6), 259-266. doi:10.1016/j.tibtech.2011.02.002 | es_ES |
dc.description.references | Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 | es_ES |
dc.description.references | Kocer, A., Tauk, L., & Déjardin, P. (2012). Nanopore sensors: From hybrid to abiotic systems. Biosensors and Bioelectronics, 38(1), 1-10. doi:10.1016/j.bios.2012.05.013 | es_ES |
dc.description.references | R. L. Fleischer , P. B.Price and R. M.Walker , Nuclear Tracks in Solids , University of California Press , Berkeley, CA , 1975 | es_ES |
dc.description.references | Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008 | es_ES |
dc.description.references | Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4 | es_ES |
dc.description.references | Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3 | es_ES |
dc.description.references | Mara, A., Siwy, Z., Trautmann, C., Wan, J., & Kamme, F. (2004). An Asymmetric Polymer Nanopore for Single Molecule Detection. Nano Letters, 4(3), 497-501. doi:10.1021/nl035141o | es_ES |
dc.description.references | Schiedt, B., Healy, K., Morrison, A. P., Neumann, R., & Siwy, Z. (2005). Transport of ions and biomolecules through single asymmetric nanopores in polymer films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236(1-4), 109-116. doi:10.1016/j.nimb.2005.03.265 | es_ES |
dc.description.references | Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 | es_ES |
dc.description.references | Siwy, Z. S., Powell, M. R., Petrov, A., Kalman, E., Trautmann, C., & Eisenberg, R. S. (2006). Calcium-Induced Voltage Gating in Single Conical Nanopores. Nano Letters, 6(8), 1729-1734. doi:10.1021/nl061114x | es_ES |
dc.description.references | Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c | es_ES |
dc.description.references | Harrell, C. C., Choi, Y., Horne, L. P., Baker, L. A., Siwy, Z. S., & Martin, C. R. (2006). Resistive-Pulse DNA Detection with a Conical Nanopore Sensor†. Langmuir, 22(25), 10837-10843. doi:10.1021/la061234k | es_ES |
dc.description.references | Wang, X., Xue, J., Wang, L., Guo, W., Zhang, W., Wang, Y., … Ouyang, Q. (2007). How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal of Physics D: Applied Physics, 40(22), 7077-7084. doi:10.1088/0022-3727/40/22/032 | es_ES |
dc.description.references | Liu, Q., Wang, Y., Guo, W., Ji, H., Xue, J., & Ouyang, Q. (2007). Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 75(5). doi:10.1103/physreve.75.051201 | es_ES |
dc.description.references | Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c | es_ES |
dc.description.references | Wharton, J. E., Jin, P., Sexton, L. T., Horne, L. P., Sherrill, S. A., Mino, W. K., & Martin, C. R. (2007). A Method for Reproducibly Preparing Synthetic Nanopores for Resistive-Pulse Biosensors. Small, 3(8), 1424-1430. doi:10.1002/smll.200700106 | es_ES |
dc.description.references | Vlassiouk, I., Smirnov, S., & Siwy, Z. (2008). Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions. ACS Nano, 2(8), 1589-1602. doi:10.1021/nn800306u | es_ES |
dc.description.references | Guo, W., Xue, J. M., Zhang, W. M., Zou, X. Q., & Wang, Y. G. (2008). Electrolytic conduction properties of single conical nanopores. Radiation Measurements, 43, S623-S626. doi:10.1016/j.radmeas.2008.03.067 | es_ES |
dc.description.references | Kosińska, I. D., Goychuk, I., Kostur, M., Schmid, G., & Hänggi, P. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3). doi:10.1103/physreve.77.031131 | es_ES |
dc.description.references | Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707 | es_ES |
dc.description.references | Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p | es_ES |
dc.description.references | Ali, M., Bayer, V., Schiedt, B., Neumann, R., & Ensinger, W. (2008). Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology, 19(48), 485711. doi:10.1088/0957-4484/19/48/485711 | es_ES |
dc.description.references | Kovarik, M. L., Zhou, K., & Jacobson, S. C. (2009). Effect of Conical Nanopore Diameter on Ion Current Rectification. The Journal of Physical Chemistry B, 113(49), 15960-15966. doi:10.1021/jp9076189 | es_ES |
dc.description.references | Fink, D., Vacík, J., Hnatowicz, V., Muñoz, G. H., Alfonta, L., & Klinkovich, I. (2010). Funnel-type etched ion tracks in polymers. Radiation Effects and Defects in Solids, 165(5), 343-361. doi:10.1080/10420151003743020 | es_ES |
dc.description.references | Vlassiouk, I., Kozel, T. R., & Siwy, Z. S. (2009). Biosensing with Nanofluidic Diodes. Journal of the American Chemical Society, 131(23), 8211-8220. doi:10.1021/ja901120f | es_ES |
dc.description.references | Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3 | es_ES |
dc.description.references | Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f | es_ES |
dc.description.references | Mukaibo, H., Horne, L. P., Park, D., & Martin, C. R. (2009). Controlling the Length of Conical Pores Etched in Ion-Tracked Poly(ethylene terephthalate) Membranes. Small, 5(21), 2474-2479. doi:10.1002/smll.200900810 | es_ES |
dc.description.references | Sexton, L. T., Mukaibo, H., Katira, P., Hess, H., Sherrill, S. A., Horne, L. P., & Martin, C. R. (2010). An Adsorption-Based Model for Pulse Duration in Resistive-Pulse Protein Sensing. Journal of the American Chemical Society, 132(19), 6755-6763. doi:10.1021/ja100693x | es_ES |
dc.description.references | Innes, L., Powell, M. R., Vlassiouk, I., Martens, C., & Siwy, Z. S. (2010). Precipitation-Induced Voltage-Dependent Ion Current Fluctuations in Conical Nanopores. The Journal of Physical Chemistry C, 114(18), 8126-8134. doi:10.1021/jp910815p | es_ES |
dc.description.references | Kubeil, C., & Bund, A. (2011). The Role of Nanopore Geometry for the Rectification of Ionic Currents. The Journal of Physical Chemistry C, 115(16), 7866-7873. doi:10.1021/jp111377h | es_ES |
dc.description.references | Powell, M. R., Sa, N., Davenport, M., Healy, K., Vlassiouk, I., Létant, S. E., … Siwy, Z. S. (2011). Noise Properties of Rectifying Nanopores. The Journal of Physical Chemistry C, 115(17), 8775-8783. doi:10.1021/jp2016038 | es_ES |
dc.description.references | Wang, L., Sun, L., Wang, C., Chen, L., Cao, L., Hu, G., … Wang, Y. (2011). Nanofluidic Pulser Based on Polymer Conical Nanopores. The Journal of Physical Chemistry C, 115(46), 22736-22741. doi:10.1021/jp2047344 | es_ES |
dc.description.references | Zhang, B., Ai, Y., Liu, J., Joo, S. W., & Qian, S. (2011). Polarization Effect of a Dielectric Membrane on the Ionic Current Rectification in a Conical Nanopore. The Journal of Physical Chemistry C, 115(50), 24951-24959. doi:10.1021/jp2089388 | es_ES |
dc.description.references | Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P., & Sartowska, B. A. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology, 22(17), 175302. doi:10.1088/0957-4484/22/17/175302 | es_ES |
dc.description.references | Pietschmann, J.-F., Wolfram, M.-T., Burger, M., Trautmann, C., Nguyen, G., Pevarnik, M., … Siwy, Z. (2013). Rectification properties of conically shaped nanopores: consequences of miniaturization. Physical Chemistry Chemical Physics, 15(39), 16917. doi:10.1039/c3cp53105h | es_ES |
dc.description.references | Gillespie, D., Boda, D., He, Y., Apel, P., & Siwy, Z. S. (2008). Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing. Biophysical Journal, 95(2), 609-619. doi:10.1529/biophysj.107.127985 | es_ES |
dc.description.references | Kalman, E. B., Vlassiouk, I., & Siwy, Z. S. (2008). Nanofluidic Bipolar Transistors. Advanced Materials, 20(2), 293-297. doi:10.1002/adma.200701867 | es_ES |
dc.description.references | Davenport, M., Rodriguez, A., Shea, K. J., & Siwy, Z. S. (2009). Squeezing Ionic Liquids through Nanopores. Nano Letters, 9(5), 2125-2128. doi:10.1021/nl900630z | es_ES |
dc.description.references | Hou, X., Yang, F., Li, L., Song, Y., Jiang, L., & Zhu, D. (2010). A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 132(33), 11736-11742. doi:10.1021/ja1045082 | es_ES |
dc.description.references | Zhang, H., Tian, Y., & Jiang, L. (2013). From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chemical Communications, 49(86), 10048. doi:10.1039/c3cc45526b | es_ES |
dc.description.references | Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1 | es_ES |
dc.description.references | Albrecht, D., Armbruster, P., Spohr, R., Roth, M., Schaupert, K., & Stuhrmann, H. (1985). Investigation of heavy ion produced defect structures in insulators by small angle scattering. Applied Physics A Solids and Surfaces, 37(1), 37-46. doi:10.1007/bf00617867 | es_ES |
dc.description.references | Saleh, S. A., & Eyal, Y. (2005). Morphology of track cores and halos created by swift uranium ions in polycarbonate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236(1-4), 81-87. doi:10.1016/j.nimb.2005.03.258 | es_ES |
dc.description.references | Apel, P. Y., Blonskaya, I. ., Oganessian, V. ., Orelovitch, O. ., & Trautmann, C. (2001). Morphology of latent and etched heavy ion tracks in radiation resistant polymers polyimide and poly(ethylene naphthalate). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 185(1-4), 216-221. doi:10.1016/s0168-583x(01)00967-3 | es_ES |
dc.description.references | Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503 | es_ES |
dc.description.references | J. F. Ziegler , J. P.Biersack and U.Littmark , The Stopping and Range of Ions in Solids , Pergamon , New York , 1985 , Free SRIM software is available from the website, http://www.srim.org/ | es_ES |
dc.description.references | Apel, P. Y., Blonskaya, I. ., Didyk, A. Y., Dmitriev, S. ., Orelovitch, O. ., Root, D., … Vutsadakis, V. . (2001). Surfactant-enhanced control of track-etch pore morphology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 179(1), 55-62. doi:10.1016/s0168-583x(00)00691-1 | es_ES |
dc.description.references | Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 | es_ES |
dc.description.references | Ho, C., Qiao, R., Heng, J. B., Chatterjee, A., Timp, R. J., Aluru, N. R., & Timp, G. (2005). Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences, 102(30), 10445-10450. doi:10.1073/pnas.0500796102 | es_ES |
dc.description.references | Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811 | es_ES |
dc.description.references | Liebes, Y., Drozdov, M., Avital, Y. Y., Kauffmann, Y., Rapaport, H., Kaplan, W. D., & Ashkenasy, N. (2010). Reconstructing solid state nanopore shape from electrical measurements. Applied Physics Letters, 97(22), 223105. doi:10.1063/1.3521411 | es_ES |
dc.description.references | Frament, C. M., & Dwyer, J. R. (2012). Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. The Journal of Physical Chemistry C, 116(44), 23315-23321. doi:10.1021/jp305381j | es_ES |
dc.description.references | Frament, C. M., Bandara, N., & Dwyer, J. R. (2013). Nanopore Surface Coating Delivers Nanopore Size and Shape through Conductance-Based Sizing. ACS Applied Materials & Interfaces, 5(19), 9330-9337. doi:10.1021/am4026455 | es_ES |