- -

Current rectification by nanoparticle blocking in single cylindrical nanopores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Current rectification by nanoparticle blocking in single cylindrical nanopores

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Nguyen, Quoc-Hung es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.date.accessioned 2015-09-30T17:06:22Z
dc.date.available 2015-09-30T17:06:22Z
dc.date.issued 2014-07-09
dc.identifier.issn 2040-3364
dc.identifier.uri http://hdl.handle.net/10251/55366
dc.description.abstract Blocking of a charged pore by an oppositely charged nanoparticle can support rectifying properties in a cylindrical nanopore, as opposed to the usual case of a fixed asymmetry in the pore geometry and charge distribution. We present here experimental data and model calculations to confirm this fundamental effect. The nanostructure imaging and the effects of nanoparticle concentration, pore radius, and salt concentration on the electrical conductance–voltage (G–V) curves are discussed. Logic responses based on chemical and electrical inputs/outputs could also be implemented with a single pore acting as an effective nanofluidic diode. To better show the generality of the results, different charge states and relative sizes of the nanopore and the nanoparticle are considered, emphasizing those physical concepts that are also found in the ionic drug blocking of protein ion channels. es_ES
dc.description.sponsorship M. A., S. N., Q.-H. N., and W. E. acknowledge the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC. P. R. and S. M. acknowledge the Ministry of Economy and Competitiveness (project MAT2012-32084), FEDER, and Generalitat Valenciana (project PROMETEO/GV/0069). The authors thank Prof. Dr Christina Trautmann from GSI for support with the heavy ion irradiation experiments and an anonymous referee for helpful suggestions. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Nanoscale es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antibiotic molecules es_ES
dc.subject Ion channels es_ES
dc.subject Transport es_ES
dc.subject Membranes es_ES
dc.subject Gradient es_ES
dc.subject Pores es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Current rectification by nanoparticle blocking in single cylindrical nanopores es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4nr02968b
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ali, M.; Ramirez Hoyos, P.; Nasir, S.; Nguyen, Q.; Ensinger, W.; Mafé, S. (2014). Current rectification by nanoparticle blocking in single cylindrical nanopores. Nanoscale. 6(18):10740-10745. https://doi.org/10.1039/c4nr02968b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/C4NR02968B es_ES
dc.description.upvformatpinicio 10740 es_ES
dc.description.upvformatpfin 10745 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 18 es_ES
dc.relation.senia 281309 es_ES
dc.identifier.eissn 2040-3372
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Generalitat Valenciana
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 es_ES
dc.description.references Nestorovich, E. M., Danelon, C., Winterhalter, M., & Bezrukov, S. M. (2002). Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proceedings of the National Academy of Sciences, 99(15), 9789-9794. doi:10.1073/pnas.152206799 es_ES
dc.description.references Mafé, S., Ramı́rez, P., & Alcaraz, A. (2003). Simple molecular model for the binding of antibiotic molecules to bacterial ion channels. The Journal of Chemical Physics, 119(15), 8097-8102. doi:10.1063/1.1606438 es_ES
dc.description.references Karginov, V. A., Nestorovich, E. M., Moayeri, M., Leppla, S. H., & Bezrukov, S. M. (2005). Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proceedings of the National Academy of Sciences, 102(42), 15075-15080. doi:10.1073/pnas.0507488102 es_ES
dc.description.references Aguilella-Arzo, M., Cervera, J., Ramírez, P., & Mafé, S. (2006). Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration. Physical Review E, 73(4). doi:10.1103/physreve.73.041914 es_ES
dc.description.references Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503 es_ES
dc.description.references Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 es_ES
dc.description.references Lee, S., Zhang, Y., White, H. S., Harrell, C. C., & Martin, C. R. (2004). Electrophoretic Capture and Detection of Nanoparticles at the Opening of a Membrane Pore Using Scanning Electrochemical Microscopy. Analytical Chemistry, 76(20), 6108-6115. doi:10.1021/ac049147p es_ES
dc.description.references Davenport, M., Healy, K., Pevarnik, M., Teslich, N., Cabrini, S., Morrison, A. P., … Létant, S. E. (2012). The Role of Pore Geometry in Single Nanoparticle Detection. ACS Nano, 6(9), 8366-8380. doi:10.1021/nn303126n es_ES
dc.description.references Menestrina, J., Yang, C., Schiel, M., Vlassiouk, I., & Siwy, Z. S. (2014). Charged Particles Modulate Local Ionic Concentrations and Cause Formation of Positive Peaks in Resistive-Pulse-Based Detection. The Journal of Physical Chemistry C, 118(5), 2391-2398. doi:10.1021/jp412135v es_ES
dc.description.references Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., … Nel, A. E. (2006). Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Letters, 6(8), 1794-1807. doi:10.1021/nl061025k es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 es_ES
dc.description.references Pellicer, J., Mafé, S., & Aguilella, V. M. (1986). Ionic Transport Across Porous Charged Membranes and the Goldman Constant Field Assumption. Berichte der Bunsengesellschaft für physikalische Chemie, 90(10), 867-872. doi:10.1002/bbpc.19860901008 es_ES
dc.description.references Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2009). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160-165. doi:10.1038/nnano.2009.379 es_ES
dc.description.references Macrae, M. X., Blake, S., Mayer, M., & Yang, J. (2010). Nanoscale Ionic Diodes with Tunable and Switchable Rectifying Behavior. Journal of the American Chemical Society, 132(6), 1766-1767. doi:10.1021/ja909876h es_ES
dc.description.references Tagliazucchi, M., Rabin, Y., & Szleifer, I. (2013). Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes. ACS Nano, 7(10), 9085-9097. doi:10.1021/nn403686s es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references B. Hille , Ion Channels of Excitable Membranes , Sinauer , Sunderland , 1992 es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555 es_ES
dc.description.references Ali, M., Ramirez, P., Nasir, S., Nguyen, Q.-H., Ensinger, W., & Mafe, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters, 104(4), 043703. doi:10.1063/1.4863511 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem