- -

Current rectification by nanoparticle blocking in single cylindrical nanopores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Current rectification by nanoparticle blocking in single cylindrical nanopores

Mostrar el registro completo del ítem

Ali, M.; Ramirez Hoyos, P.; Nasir, S.; Nguyen, Q.; Ensinger, W.; Mafé, S. (2014). Current rectification by nanoparticle blocking in single cylindrical nanopores. Nanoscale. 6(18):10740-10745. https://doi.org/10.1039/c4nr02968b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55366

Ficheros en el ítem

Metadatos del ítem

Título: Current rectification by nanoparticle blocking in single cylindrical nanopores
Autor: Ali, Mubarak Ramirez Hoyos, Patricio Nasir, Saima Nguyen, Quoc-Hung Ensinger, Wolfgang Mafé, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
Blocking of a charged pore by an oppositely charged nanoparticle can support rectifying properties in a cylindrical nanopore, as opposed to the usual case of a fixed asymmetry in the pore geometry and charge distribution. ...[+]
Palabras clave: Antibiotic molecules , Ion channels , Transport , Membranes , Gradient , Pores
Derechos de uso: Reserva de todos los derechos
Fuente:
Nanoscale. (issn: 2040-3364 ) (eissn: 2040-3372 )
DOI: 10.1039/c4nr02968b
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/C4NR02968B
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/
Agradecimientos:
M. A., S. N., Q.-H. N., and W. E. acknowledge the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC. P. R. and S. M. acknowledge the Ministry of Economy and Competitiveness (project ...[+]
Tipo: Artículo

References

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 [+]
Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312

Nestorovich, E. M., Danelon, C., Winterhalter, M., & Bezrukov, S. M. (2002). Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proceedings of the National Academy of Sciences, 99(15), 9789-9794. doi:10.1073/pnas.152206799

Mafé, S., Ramı́rez, P., & Alcaraz, A. (2003). Simple molecular model for the binding of antibiotic molecules to bacterial ion channels. The Journal of Chemical Physics, 119(15), 8097-8102. doi:10.1063/1.1606438

Karginov, V. A., Nestorovich, E. M., Moayeri, M., Leppla, S. H., & Bezrukov, S. M. (2005). Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proceedings of the National Academy of Sciences, 102(42), 15075-15080. doi:10.1073/pnas.0507488102

Aguilella-Arzo, M., Cervera, J., Ramírez, P., & Mafé, S. (2006). Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration. Physical Review E, 73(4). doi:10.1103/physreve.73.041914

Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503

Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119

Lee, S., Zhang, Y., White, H. S., Harrell, C. C., & Martin, C. R. (2004). Electrophoretic Capture and Detection of Nanoparticles at the Opening of a Membrane Pore Using Scanning Electrochemical Microscopy. Analytical Chemistry, 76(20), 6108-6115. doi:10.1021/ac049147p

Davenport, M., Healy, K., Pevarnik, M., Teslich, N., Cabrini, S., Morrison, A. P., … Létant, S. E. (2012). The Role of Pore Geometry in Single Nanoparticle Detection. ACS Nano, 6(9), 8366-8380. doi:10.1021/nn303126n

Menestrina, J., Yang, C., Schiel, M., Vlassiouk, I., & Siwy, Z. S. (2014). Charged Particles Modulate Local Ionic Concentrations and Cause Formation of Positive Peaks in Resistive-Pulse-Based Detection. The Journal of Physical Chemistry C, 118(5), 2391-2398. doi:10.1021/jp412135v

Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., … Nel, A. E. (2006). Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Letters, 6(8), 1794-1807. doi:10.1021/nl061025k

Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026

Pellicer, J., Mafé, S., & Aguilella, V. M. (1986). Ionic Transport Across Porous Charged Membranes and the Goldman Constant Field Assumption. Berichte der Bunsengesellschaft für physikalische Chemie, 90(10), 867-872. doi:10.1002/bbpc.19860901008

Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2009). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160-165. doi:10.1038/nnano.2009.379

Macrae, M. X., Blake, S., Mayer, M., & Yang, J. (2010). Nanoscale Ionic Diodes with Tunable and Switchable Rectifying Behavior. Journal of the American Chemical Society, 132(6), 1766-1767. doi:10.1021/ja909876h

Tagliazucchi, M., Rabin, Y., & Szleifer, I. (2013). Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes. ACS Nano, 7(10), 9085-9097. doi:10.1021/nn403686s

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

B. Hille , Ion Channels of Excitable Membranes , Sinauer , Sunderland , 1992

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555

Ali, M., Ramirez, P., Nasir, S., Nguyen, Q.-H., Ensinger, W., & Mafe, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters, 104(4), 043703. doi:10.1063/1.4863511

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem