Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2014). A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem. Applied Mathematics and Computation. 232:237-246. https://doi.org/10.1016/j.amc.2014.01.056
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55393
Title:
|
A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem
|
Author:
|
Andreu Estellés, Carlos
Cambil Teba, Noelia
Cordero Barbero, Alicia
Torregrosa Sánchez, Juan Ramón
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
A derivative-free optimal eighth-order family of iterative methods for solving nonlinear equations is constructed using weight functions approach with divided first order differences. Its performance, along with several ...[+]
A derivative-free optimal eighth-order family of iterative methods for solving nonlinear equations is constructed using weight functions approach with divided first order differences. Its performance, along with several other derivative-free methods, is studied on the specific problem of Danchick's reformulation of Gauss' method of preliminary orbit determination. Numerical experiments show that such derivative-free, high-order methods offer significant advantages over both, the classical and Danchick's Newton approach. (C) 2014 Elsevier Inc. All rights reserved.
[-]
|
Subjects:
|
Nonlinear equation
,
Iterative method
,
Derivative-free scheme
,
Order of convergence
,
Basin of attraction
,
Efficiency index
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Applied Mathematics and Computation. (issn:
0096-3003
) (eissn:
1873-5649
)
|
DOI:
|
10.1016/j.amc.2014.01.056
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.amc.2014.01.056
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
|
Thanks:
|
This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.
|
Type:
|
Artículo
|