- -

A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem

Show full item record

Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2014). A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem. Applied Mathematics and Computation. 232:237-246. doi:10.1016/j.amc.2014.01.056

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55393

Files in this item

Item Metadata

Title: A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
A derivative-free optimal eighth-order family of iterative methods for solving nonlinear equations is constructed using weight functions approach with divided first order differences. Its performance, along with several ...[+]
Subjects: Nonlinear equation , Iterative method , Derivative-free scheme , Order of convergence , Basin of attraction , Efficiency index
Copyrigths: Reserva de todos los derechos
Source:
Applied Mathematics and Computation. (issn: 0096-3003 ) (eissn: 1873-5649 )
DOI: 10.1016/j.amc.2014.01.056
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.amc.2014.01.056
Thanks:
This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.
Type: Artículo

This item appears in the following Collection(s)

Show full item record