- -

Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez Nogales, M. es_ES
dc.contributor.author Marini, Stephan es_ES
dc.contributor.author Gimeno Martinez, Benito es_ES
dc.contributor.author Alvarez Melcon, Alejandro es_ES
dc.contributor.author Quesada Pereira, Fernando Daniel es_ES
dc.contributor.author Boria Esbert, Vicente Enrique es_ES
dc.contributor.author Soto Pacheco, Pablo es_ES
dc.contributor.author Cogollos Borras, Santiago es_ES
dc.contributor.author Raboso García-Baquero, David es_ES
dc.date.accessioned 2015-10-01T11:28:12Z
dc.date.available 2015-10-01T11:28:12Z
dc.date.issued 2012-09-21
dc.identifier.issn 0048-6604
dc.identifier.uri http://hdl.handle.net/10251/55423
dc.description.abstract A technique for the accurate computation of the time domain electromagnetic fields radiated by a charged distribution traveling along an arbitrarily shaped waveguide region is presented. Based on the transformation (by means of the standard Fourier analysis) of the time-varying current density of the analyzed problem to the frequency domain, the resulting equivalent current is further convolved with the dyadic electric and magnetic Green's functions. Moreover, we show that only the evaluation of the transverse magnetic modes of the structure is required for the calculation of fields radiated by particles traveling in the axial direction. Finally, frequency domain electric and magnetic fields are transformed back to the time domain, just obtaining the total fields radiated by the charged distribution. Furthermore, we present a method for the computation of the wakefields of arbitrary cross-section uniform waveguides from the resulting field expressions. Several examples of charged particles moving in the axial direction of such waveguides are included. es_ES
dc.description.sponsorship The authors would like to thank ESA/ESTEC for having cofunded this research activity through the Network Partnering Initiative program and through the project "Multipactor Analysis in Planar Transmission Lines" (contract 20841/08/NL/GLC). We also are grateful to the Spanish government and the local Council of Murcia for their support through the projects CICYT Ref. TEC2010-21520-C04-04 and SENECA Ref. 08833/PI/08, respectively. en_EN
dc.language Inglés es_ES
dc.publisher American Geophysical Union (AGU) es_ES
dc.relation ESA/ESTEC through the project "Multipactor Analysis in Planar Transmission Lines" 20841/08/NL/GLC es_ES
dc.relation.ispartof Radio Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electromagnetic fields es_ES
dc.subject Green's function es_ES
dc.subject BI-RME method es_ES
dc.subject Waveguide es_ES
dc.subject Particle Accelerator es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1029/2012RS005008
dc.relation.projectID info:eu-repo/grantAgreement/ESA//20841%2F08%2FNL%2FGLC/EU/Multipactor Análisis in Planar Transmisión Lines/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-21520-C04-04/ES/TECNICAS DE MODELADO, SINTESIS Y DISEÑO DE CIRCUITOS PASIVOS MINIATURIZADOS EN TECNOLOGIA HIBRIDA GUIADA-PLANAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//08833%2FPI%2F08/ES/Métodos de Análisis de Comunicaciones Avanzadas mediante Cálculo Optimizado/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Jimenez Nogales, M.; Marini, S.; Gimeno Martinez, B.; Alvarez Melcon, A.; Quesada Pereira, FD.; Boria Esbert, VE.; Soto Pacheco, P.... (2012). Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions. Radio Science. 47(5):1-14. https://doi.org/10.1029/2012RS005008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1029/2012RS005008 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 236788 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Space Agency es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Alvarez-Melcon, A., & Mosig, J. R. (2000). Two techniques for the efficient numerical calculation of the Green’s functions for planar shielded circuits and antennas. IEEE Transactions on Microwave Theory and Techniques, 48(9), 1492-1504. doi:10.1109/22.869000 es_ES
dc.description.references Bane, K. L. F., Wilson, P. B., & Weiland, T. (1985). Wake fields and wake field acceleration. AIP Conference Proceedings. doi:10.1063/1.35182 es_ES
dc.description.references Bozzi, M., Perregrini, L., Alvarez Melcon, A., Guglielmi, M., & Conciauro, G. (2001). MoM/BI-RME analysis of boxed MMICs with arbitrarily shaped metallizations. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2227-2234. doi:10.1109/22.971604 es_ES
dc.description.references Burov, A., & Danilov, V. (1999). Suppression of Transverse Bunch Instabilities by Asymmetries in the Chamber Geometry. Physical Review Letters, 82(11), 2286-2289. doi:10.1103/physrevlett.82.2286 es_ES
dc.description.references Cogollos, S., Marini, S., Boria, V. E., Soto, P., Vidal, A., Esteban, H., … Gimeno, B. (2003). Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular, and elliptical arcs using the BI-RME method. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2378-2390. doi:10.1109/tmtt.2003.819776 es_ES
dc.description.references Conciauro, G., Bressan, M., & Zuffada, C. (1984). Waveguide Modes Via an Integral Equation Leading to a Linear Matrix Eigenvalue Problem. IEEE Transactions on Microwave Theory and Techniques, 32(11), 1495-1504. doi:10.1109/tmtt.1984.1132880 es_ES
dc.description.references Deshpande , M. D. 1997 Analysis of discontinuities in a rectangular waveguide using dyadic Green's function approach in conjuntion with Method of Moments Langley Res. Cent., NASA Hampton, Va. es_ES
dc.description.references Felsen, L. B., & Marcuvitz, N. (1994). Radiation and Scattering of Waves. doi:10.1109/9780470546307 es_ES
dc.description.references Figueroa, H., Gai, W., Konecny, R., Norem, J., Ruggiero, A., Schoessow, P., & Simpson, J. (1988). Direct Measurement of Beam-Induced Fields in Accelerating Structures. Physical Review Letters, 60(21), 2144-2147. doi:10.1103/physrevlett.60.2144 es_ES
dc.description.references Gai, W., Kanareykin, A. D., Kustov, A. L., & Simpson, J. (1997). Numerical simulations of intense charged-particle beam propagation in a dielectric wake-field accelerator. Physical Review E, 55(3), 3481-3488. doi:10.1103/physreve.55.3481 es_ES
dc.description.references Gluckstern, R. L., van Zeijts, J., & Zotter, B. (1993). Coupling impedance of beam pipes of general cross section. Physical Review E, 47(1), 656-663. doi:10.1103/physreve.47.656 es_ES
dc.description.references Hanson, G. W., & Yakovlev, A. B. (2002). Operator Theory for Electromagnetics. doi:10.1007/978-1-4757-3679-3 es_ES
dc.description.references Hess, M., Park, C. S., & Bolton, D. (2007). Green’s function based space-charge field solver for electron source simulations. Physical Review Special Topics - Accelerators and Beams, 10(5). doi:10.1103/physrevstab.10.054201 es_ES
dc.description.references Iriso-Ariz, U., Caspers, F., & Mostacci, A. (s. f.). Evaluation of the horizontal to vertical transverse impedance ratio for LHC beam screen using a 2D electrostatic code. Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440). doi:10.1109/pac.2003.1289954 es_ES
dc.description.references Jing, C., Liu, W., Xiao, L., Gai, W., Schoessow, P., & Wong, T. (2003). Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures. Physical Review E, 68(1). doi:10.1103/physreve.68.016502 es_ES
dc.description.references Kim, S. H., Chen, K. W., & Yang, J. S. (1990). Modal analysis of wake fields and its application to elliptical pill‐box cavity with finite aperture. Journal of Applied Physics, 68(10), 4942-4951. doi:10.1063/1.347079 es_ES
dc.description.references Lutman, A., Vescovo, R., & Craievich, P. (2008). Electromagnetic field and short-range wake function in a beam pipe of elliptical cross section. Physical Review Special Topics - Accelerators and Beams, 11(7). doi:10.1103/physrevstab.11.074401 es_ES
dc.description.references Ng, K.-Y. (1990). Wake fields in a dielectric-lined waveguide. Physical Review D, 42(5), 1819-1828. doi:10.1103/physrevd.42.1819 es_ES
dc.description.references Palumbo, L., Vaccaro, V. G., & Wustefeld, G. (1984). Coupling Impedance in a Circular Particle Accelerator, a Particular Case: Circular Beam, Elliptic Chamber. IEEE Transactions on Nuclear Science, 31(4), 1011-1020. doi:10.1109/tns.1984.4333427 es_ES
dc.description.references Panofsky, W. K. H., & Wenzel, W. A. (1956). Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio‐Frequency Fields. Review of Scientific Instruments, 27(11), 967-967. doi:10.1063/1.1715427 es_ES
dc.description.references Rahmat-Samii, Y. (1975). On the Question of Computation of the Dyadic Green’s Function at the Source Region in Waveguides and Cavities (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 23(9), 762-765. doi:10.1109/tmtt.1975.1128671 es_ES
dc.description.references Rosing, M., & Gai, W. (1990). Longitudinal- and transverse-wake-field effects in dielectric structures. Physical Review D, 42(5), 1829-1834. doi:10.1103/physrevd.42.1829 es_ES
dc.description.references Rumolo, G., Ruggiero, F., & Zimmermann, F. (2001). Simulation of the electron-cloud build up and its consequences on heat load, beam stability, and diagnostics. Physical Review Special Topics - Accelerators and Beams, 4(1). doi:10.1103/physrevstab.4.012801 es_ES
dc.description.references Salah, W. (2004). Analytical and numerical investigations of the evolution of wake fields of accelerated electron beams encountering cavity discontinuities in laser-driven RF-free electron laser photoinjector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 533(3), 248-257. doi:10.1016/j.nima.2004.05.129 es_ES
dc.description.references Salah, W., & Dolique, J.-M. (1999). Wake field of electron beam accelerated in a RF-gun of free electron laser «ELSA». Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 431(1-2), 27-37. doi:10.1016/s0168-9002(99)00255-7 es_ES
dc.description.references Stupakov, G., Bane, K. L. F., & Zagorodnov, I. (2007). Optical approximation in the theory of geometric impedance. Physical Review Special Topics - Accelerators and Beams, 10(5). doi:10.1103/physrevstab.10.054401 es_ES
dc.description.references Wang, J. J. H. (1978). Analysis of a Three-Dimensional Arbitrarily Shaped Dielectric or Biological Body Inside a Rectangular Waveguide. IEEE Transactions on Microwave Theory and Techniques, 26(7), 457-462. doi:10.1109/tmtt.1978.1129416 es_ES
dc.description.references Wangler, T. P. (2008). RF Linear Accelerators. doi:10.1002/9783527623426 es_ES
dc.description.references Xiao, L., Gai, W., & Sun, X. (2001). Field analysis of a dielectric-loaded rectangular waveguide accelerating structure. Physical Review E, 65(1). doi:10.1103/physreve.65.016505 es_ES
dc.description.references Zagorodnov, I. (2006). Indirect methods for wake potential integration. Physical Review Special Topics - Accelerators and Beams, 9(10). doi:10.1103/physrevstab.9.102002 es_ES
dc.description.references Zimmermann , F. 1997 A simulation study of electron-cloud instability and beam-induced multipacting in the LHC Eur. Org. for Nucl. Res. Geneva, Switzerland es_ES
dc.description.references Zotter, B. W., & Kheifets, S. (1998). Impedances and Wakes in High Energy Particle Accelerators. doi:10.1142/3068 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem