Abramowitz, M., Stegun, A.: Handbook of Mathematical Functions. Dover, New York (1964)
Borel, S., Levadoux, D., Alouges, F.: A new well-conditioned integral formulaiton for Maxwell equations in three dimensions. IEEE Trans. Antennas Propag. 9, 2995–3004 (2005)
Bruno, O., Elling, T., Paffenroth, R., Turc, C.: Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations. J. Comput. Phys. 228, 6169–6183 (2009)
[+]
Abramowitz, M., Stegun, A.: Handbook of Mathematical Functions. Dover, New York (1964)
Borel, S., Levadoux, D., Alouges, F.: A new well-conditioned integral formulaiton for Maxwell equations in three dimensions. IEEE Trans. Antennas Propag. 9, 2995–3004 (2005)
Bruno, O., Elling, T., Paffenroth, R., Turc, C.: Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations. J. Comput. Phys. 228, 6169–6183 (2009)
Boubendir, Y., Turc, C.: Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions. IMA J. Numer. Anal. (2013). doi: 10.1093/imanum/drs038 (published online: March 7)
Bruno, O., Elling, T., Turc, C.: Well-conditioned high-order algorithms for the solution of three-dimensional surface acoustic scattering problems with Neumann boundary conditions (preprint)
Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustic scattering. J. Integr. Equ. Appl. 21, 229–279 (2009)
Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)
Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)
Contopanagos, H., Dembart, B., Epton, M., Ottusch, J., Rokhlin, V., Visher, J., Wandzura, S.: Well-conditioned boundary inte- gral equations for three-dimensional electromagnetic scattering. IEEE Trans. Antennas Propag. 50, 1824–1830 (2002)
Epstein, C.L., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Commun. Pure Appl. Math. 63, 0413–0463 (2010)
Hsiao, G., Kleinman, E.: Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics. IEEE Trans. Antennas Propag. 45, 316–328 (1997)
Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1975)
Kleinman, R., Martin, P.: On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48, 307–325 (1988)
Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. SIAM J. Appl. Math. 48, 307–325 (1988)
Kress, R.: Linear Integral Equations. Springer, Heidelberg (1999)
Kress, R., Roach, G.: Transmission problems for the Helmholtz equation. J. Math. Phys. 19, 1433–1437 (1978)
Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, New York (2001)
Panich, I.: On the question of the solvability of the exterior boundary problem for the wave equation and Maxwell’s equations. Uspekhi Mat. Nauk. 20, 221–226 (1965)
Papas, C.H.: Theory of Electromagnetic Wave Propagation. Dover, New York (1988)
Rokhlin, V.: Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5, 257–272 (1983)
[-]