- -

Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore

Mostrar el registro completo del ítem

Gómez Lozano, V.; Ramirez Hoyos, P.; Cervera Montesinos, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafé, S. (2015). Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied Physics Letters. 106(7):73701-73703. https://doi.org/10.1063/1.4909532

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55749

Ficheros en el ítem

Metadatos del ítem

Título: Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore
Autor: Gómez Lozano, Vicente Ramirez Hoyos, Patricio Cervera Montesinos, Javier Nasir, Saima Ali, Mubarak Ensinger, Wolfgang Mafé, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
The possibility of taking advantage of a fluctuating environment for energy and information transduction is a significant challenge in biological and artificial nanostructures. We demonstrate here directional electrical ...[+]
Palabras clave: Nanofluidic diode , Ion channels , Rectification , Transduction , Cells
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Physics Letters. (issn: 0003-6951 ) (eissn: 1077-3118 )
DOI: 10.1063/1.4909532
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4909532
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F069
Descripción: Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics
Agradecimientos:
We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (Project MAT2012-32084) and the Generalitat Valenciana (Project Prometeo/GV/0069).
Tipo: Artículo

References

Astumian, R. D. (2011). Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules. Annual Review of Biophysics, 40(1), 289-313. doi:10.1146/annurev-biophys-042910-155355

Tsong, T. Y. (2002). Journal of Biological Physics, 28(2), 309-325. doi:10.1023/a:1019991918315

Xie, T. D., Chen, Y., Marszalek, P., & Tsong, T. Y. (1997). Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps. Biophysical Journal, 72(6), 2496-2502. doi:10.1016/s0006-3495(97)78894-5 [+]
Astumian, R. D. (2011). Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules. Annual Review of Biophysics, 40(1), 289-313. doi:10.1146/annurev-biophys-042910-155355

Tsong, T. Y. (2002). Journal of Biological Physics, 28(2), 309-325. doi:10.1023/a:1019991918315

Xie, T. D., Chen, Y., Marszalek, P., & Tsong, T. Y. (1997). Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps. Biophysical Journal, 72(6), 2496-2502. doi:10.1016/s0006-3495(97)78894-5

Qian, H. (2012). Cooperativity in Cellular Biochemical Processes: Noise-Enhanced Sensitivity, Fluctuating Enzyme, Bistability with Nonlinear Feedback, and Other Mechanisms for Sigmoidal Responses. Annual Review of Biophysics, 41(1), 179-204. doi:10.1146/annurev-biophys-050511-102240

Levin, M. (2012). Molecular bioelectricity in developmental biology: New tools and recent discoveries. BioEssays, 34(3), 205-217. doi:10.1002/bies.201100136

Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748

Hudspeth, A. J., Choe, Y., Mehta, A. D., & Martin, P. (2000). Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proceedings of the National Academy of Sciences, 97(22), 11765-11772. doi:10.1073/pnas.97.22.11765

Simpson, M. L., & Cummings, P. T. (2011). Fluctuations and Correlations in Physical and Biological Nanosystems: The Tale Is in the Tails. ACS Nano, 5(4), 2425-2432. doi:10.1021/nn201011m

Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81(1), 387-442. doi:10.1103/revmodphys.81.387

Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477-1481. doi:10.1103/physrevlett.71.1477

Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0

Cervera, J., Claver, J. M., & Mafe, S. (2013). Individual Variability and Average Reliability in Parallel Networks of Heterogeneous Biological and Artificial Nanostructures. IEEE Transactions on Nanotechnology, 12(6), 1198-1205. doi:10.1109/tnano.2013.2283871

Hirano, Y., Segawa, Y., Kawai, T., & Matsumoto, T. (2012). Stochastic Resonance in a Molecular Redox Circuit. The Journal of Physical Chemistry C, 117(1), 140-145. doi:10.1021/jp310486z

Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103

Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328

Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026

Ali, M., Ramirez, P., Nasir, S., Nguyen, Q.-H., Ensinger, W., & Mafe, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters, 104(4), 043703. doi:10.1063/1.4863511

Cervera, J., & Mafé, S. (2013). Threshold diversity effects on the electric currents of voltage-gated ion channels. EPL (Europhysics Letters), 102(6), 68002. doi:10.1209/0295-5075/102/68002

Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740

Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem