- -

Basins of attraction for various Steffensen-Type methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Basins of attraction for various Steffensen-Type methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Soleymani, Fazlollah es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Shateyi, Standford es_ES
dc.date.accessioned 2015-10-08T12:15:52Z
dc.date.available 2015-10-08T12:15:52Z
dc.date.issued 2014
dc.identifier.issn 1110-757X
dc.identifier.uri http://hdl.handle.net/10251/55800
dc.description.abstract The dynamical behavior of different Steffensen-type methods is analyzed. We check the chaotic behaviors alongside the convergence radii (understood as the wideness of the basin of attraction) needed by Steffensen-type methods, that is, derivative-free iteration functions, to converge to a root and compare the results using different numerical tests. We will conclude that the convergence radii (and the stability) of Steffensen-type methods are improved by increasing the convergence order. The computer programming package MATHEMATICA provides a powerful but easy environment for all aspects of numerics. This paper puts on show one of the application of this computer algebra system in finding fixed points of iteration functions. es_ES
dc.description.sponsorship The authors are indebted to the referees for some interesting comments and suggestions. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Applied Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Derivative-free methods es_ES
dc.subject Iterative methods free es_ES
dc.subject Find simple roots es_ES
dc.subject Nonlinear equations es_ES
dc.subject Dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Basins of attraction for various Steffensen-Type methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/539707
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Shateyi, S. (2014). Basins of attraction for various Steffensen-Type methods. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/539707 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/539707 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 269011 es_ES
dc.identifier.eissn 1687-0042
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Soleymani, F. (2011). Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 12(2), 255. doi:10.18514/mmn.2011.303 es_ES
dc.description.references Zheng, Q., Zhao, P., Zhang, L., & Ma, W. (2010). Variants of Steffensen-secant method and applications. Applied Mathematics and Computation, 216(12), 3486-3496. doi:10.1016/j.amc.2010.04.058 es_ES
dc.description.references Neta, B., Scott, M., & Chun, C. (2012). Basins of attraction for several methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 218(21), 10548-10556. doi:10.1016/j.amc.2012.04.017 es_ES
dc.description.references Neta, B., & Scott, M. (2013). On a family of Halley-like methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 219(15), 7940-7944. doi:10.1016/j.amc.2013.02.035 es_ES
dc.description.references Neta, B., & Chun, C. (2013). On a family of Laguerre methods to find multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(23), 10987-11004. doi:10.1016/j.amc.2013.05.002 es_ES
dc.description.references Neta, B., Chun, C., & Scott, M. (2014). Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 227, 567-592. doi:10.1016/j.amc.2013.11.017 es_ES
dc.description.references Amat, S., Busquier, S., & Plaza, S. (2005). Dynamics of the King and Jarratt iterations. Aequationes mathematicae, 69(3), 212-223. doi:10.1007/s00010-004-2733-y es_ES
dc.description.references Chicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075 es_ES
dc.description.references Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., & Vindel, P. (2013). Chaos in King’s iterative family. Applied Mathematics Letters, 26(8), 842-848. doi:10.1016/j.aml.2013.03.012 es_ES
dc.description.references Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 es_ES
dc.description.references Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 219(16), 8568-8583. doi:10.1016/j.amc.2013.02.042 es_ES
dc.description.references Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718 es_ES
dc.description.references Susanto, H., & Karjanto, N. (2009). Newton’s method’s basins of attraction revisited. Applied Mathematics and Computation, 215(3), 1084-1090. doi:10.1016/j.amc.2009.06.041 es_ES
dc.description.references Vrscay, E. R., & Gilbert, W. J. (1987). Extraneous fixed points, basin boundaries and chaotic dynamics for Schr�der and K�nig rational iteration functions. Numerische Mathematik, 52(1), 1-16. doi:10.1007/bf01401018 es_ES
dc.description.references Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 es_ES
dc.description.references Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310 es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references McMullen, C. (1987). Families of Rational Maps and Iterative Root-Finding Algorithms. The Annals of Mathematics, 125(3), 467. doi:10.2307/1971408 es_ES
dc.description.references Smale, S. (1985). On the efficiency of algorithms of analysis. Bulletin of the American Mathematical Society, 13(2), 87-122. doi:10.1090/s0273-0979-1985-15391-1 es_ES
dc.description.references Liu, Z., Zheng, Q., & Zhao, P. (2010). A variant of Steffensen’s method of fourth-order convergence and its applications. Applied Mathematics and Computation, 216(7), 1978-1983. doi:10.1016/j.amc.2010.03.028 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). A Family of Derivative-Free Methods with High Order of Convergence and Its Application to Nonsmooth Equations. Abstract and Applied Analysis, 2012, 1-15. doi:10.1155/2012/836901 es_ES
dc.description.references Zheng, Q., Li, J., & Huang, F. (2011). An optimal Steffensen-type family for solving nonlinear equations. Applied Mathematics and Computation, 217(23), 9592-9597. doi:10.1016/j.amc.2011.04.035 es_ES
dc.description.references Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/568740 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem