Soleymani, F. (2011). Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 12(2), 255. doi:10.18514/mmn.2011.303
Zheng, Q., Zhao, P., Zhang, L., & Ma, W. (2010). Variants of Steffensen-secant method and applications. Applied Mathematics and Computation, 216(12), 3486-3496. doi:10.1016/j.amc.2010.04.058
Neta, B., Scott, M., & Chun, C. (2012). Basins of attraction for several methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 218(21), 10548-10556. doi:10.1016/j.amc.2012.04.017
[+]
Soleymani, F. (2011). Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 12(2), 255. doi:10.18514/mmn.2011.303
Zheng, Q., Zhao, P., Zhang, L., & Ma, W. (2010). Variants of Steffensen-secant method and applications. Applied Mathematics and Computation, 216(12), 3486-3496. doi:10.1016/j.amc.2010.04.058
Neta, B., Scott, M., & Chun, C. (2012). Basins of attraction for several methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 218(21), 10548-10556. doi:10.1016/j.amc.2012.04.017
Neta, B., & Scott, M. (2013). On a family of Halley-like methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 219(15), 7940-7944. doi:10.1016/j.amc.2013.02.035
Neta, B., & Chun, C. (2013). On a family of Laguerre methods to find multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(23), 10987-11004. doi:10.1016/j.amc.2013.05.002
Neta, B., Chun, C., & Scott, M. (2014). Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 227, 567-592. doi:10.1016/j.amc.2013.11.017
Amat, S., Busquier, S., & Plaza, S. (2005). Dynamics of the King and Jarratt iterations. Aequationes mathematicae, 69(3), 212-223. doi:10.1007/s00010-004-2733-y
Chicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075
Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., & Vindel, P. (2013). Chaos in King’s iterative family. Applied Mathematics Letters, 26(8), 842-848. doi:10.1016/j.aml.2013.03.012
Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013
Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 219(16), 8568-8583. doi:10.1016/j.amc.2013.02.042
Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718
Susanto, H., & Karjanto, N. (2009). Newton’s method’s basins of attraction revisited. Applied Mathematics and Computation, 215(3), 1084-1090. doi:10.1016/j.amc.2009.06.041
Vrscay, E. R., & Gilbert, W. J. (1987). Extraneous fixed points, basin boundaries and chaotic dynamics for Schr�der and K�nig rational iteration functions. Numerische Mathematik, 52(1), 1-16. doi:10.1007/bf01401018
Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6
Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310
Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860
McMullen, C. (1987). Families of Rational Maps and Iterative Root-Finding Algorithms. The Annals of Mathematics, 125(3), 467. doi:10.2307/1971408
Smale, S. (1985). On the efficiency of algorithms of analysis. Bulletin of the American Mathematical Society, 13(2), 87-122. doi:10.1090/s0273-0979-1985-15391-1
Liu, Z., Zheng, Q., & Zhao, P. (2010). A variant of Steffensen’s method of fourth-order convergence and its applications. Applied Mathematics and Computation, 216(7), 1978-1983. doi:10.1016/j.amc.2010.03.028
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). A Family of Derivative-Free Methods with High Order of Convergence and Its Application to Nonsmooth Equations. Abstract and Applied Analysis, 2012, 1-15. doi:10.1155/2012/836901
Zheng, Q., Li, J., & Huang, F. (2011). An optimal Steffensen-type family for solving nonlinear equations. Applied Mathematics and Computation, 217(23), 9592-9597. doi:10.1016/j.amc.2011.04.035
Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/568740
[-]