Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Hueso Pagoaga, José Luís | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2015-10-15T09:43:03Z | |
dc.date.available | 2015-10-15T09:43:03Z | |
dc.date.issued | 2012-06 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | http://hdl.handle.net/10251/56021 | |
dc.description.abstract | [EN] In the present paper, by approximating the derivatives in the well known fourth-order Ostrowski's method and in a sixth-order improved Ostrowski's method by central-difference quotients, we obtain new modifications of these methods free from derivatives. We prove the important fact that the methods obtained preserve their convergence orders 4 and 6, respectively, without calculating any derivatives. Finally, numerical tests confirm the theoretical results and allow us to compare these variants with the corresponding methods that make use of derivatives and with the classical Newton's method. (C) 2010 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Ciencia y Tecnología MTM2010-18539 | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Central approximation | es_ES |
dc.subject | Steffensen's method | es_ES |
dc.subject | Derivative free method | es_ES |
dc.subject | Convergence order | es_ES |
dc.subject | Efficiency index | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Steffensen type methods for solving nonlinear equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2010.08.043 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2012). Steffensen type methods for solving nonlinear equations. Journal of Computational and Applied Mathematics. 236(12):3058-3064. https://doi.org/10.1016/j.cam.2010.08.043 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.cam.2010.08.043 | es_ES |
dc.description.upvformatpinicio | 3058 | es_ES |
dc.description.upvformatpfin | 3064 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 236 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 237511 | es_ES |
dc.identifier.eissn | 1879-1778 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación |