- -

A model for acoustic absorbent materials derived from coconut fiber

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A model for acoustic absorbent materials derived from coconut fiber

Show full item record

Ramis Soriano, J.; Rey Tormos, RMD.; Alba Fernández, J.; Godinho, L.; Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción. 64(313):1-7. doi:10.3989/mc.2014.00513

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/56184

Files in this item

Item Metadata

Title: A model for acoustic absorbent materials derived from coconut fiber
Secondary Title: Un modelo para materiales absorbentes acústicos derivados de la fibra de coco
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The ...[+]


[ES] En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, ...[+]
Subjects: Acoustic impedance , Absorption coefficient , Natural fibers , Empirical models , Impedancia acústica , Coeficiente de absorción , Fibras naturales , Modelos empíricos
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Materiales de Construcción. (issn: 0465-2746 )
DOI: 10.3989/mc.2014.00513
Publisher:
CSIC
Publisher version: http://dx.doi.org/10.3989/mc.2014.00513
Type: Artículo

References

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19

4. Miki, Y. (1990) Acoustical Properties of Porous Materials-Generalizations of empirical models. J. Acoust. Soc. Jpn. (E) 11 [1], 13–24. [+]
Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19

4. Miki, Y. (1990) Acoustical Properties of Porous Materials-Generalizations of empirical models. J. Acoust. Soc. Jpn. (E) 11 [1], 13–24.

Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7

Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008

Wang, X., Eisenbrey, J., Zeitz, M., & Sun, J. Q. (2004). Multi-stage regression analysis of acoustical properties of polyurethane foams. Journal of Sound and Vibration, 273(4-5), 1109-1117. doi:10.1016/j.jsv.2003.09.039

Shoshani, Y., & Yakubov, Y. (2000). Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Applied Acoustics, 59(1), 77-87. doi:10.1016/s0003-682x(99)00015-8

Voronina, N. (1996). Improved empirical model of sound propagation through a fibrous material. Applied Acoustics, 48(2), 121-132. doi:10.1016/0003-682x(95)00055-e

Voronina, N. (1998). An empirical model for elastic porous materials. Applied Acoustics, 55(1), 67-83. doi:10.1016/s0003-682x(97)00098-4

Voronina, N. (1999). An empirical model for rigid-frame porous materials with low porosity. Applied Acoustics, 58(3), 295-304. doi:10.1016/s0003-682x(98)00076-0

Voronina, N. ., & Horoshenkov, K. . (2003). A new empirical model for the acoustic properties of loose granular media. Applied Acoustics, 64(4), 415-432. doi:10.1016/s0003-682x(02)00105-6

Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277-288. doi:10.1016/j.conbuildmat.2005.08.028

Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. doi:10.1016/j.enbuild.2011.03.015

Hosseini Fouladi, M., Nor, M. J. M., Ayub, M., & Leman, Z. A. (2010). Utilization of coir fiber in multilayer acoustic absorption panel. Applied Acoustics, 71(3), 241-249. doi:10.1016/j.apacoust.2009.09.003

Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007

Nor, M. J. M., Ayub, M., Zulkifli, R., Amin, N., & Fouladi, M. H. (2010). Effect of Different Factors on the Acoustic Absorption of Coir Fiber. Journal of Applied Sciences, 10(22), 2887-2892. doi:10.3923/jas.2010.2887.2892

19. Zulkifli, R.; Nor, M.J.M.; Ismail, A.R.; Nuawi, M.Z.; Abdullah, S.; Tahir, M.F.M.; Rahman, M.N.A. (2009) Comparison of Acoustic Properties between Coir Fibre and Oil Palm Fibre. EJSR, 33 [1], 144–152.

20. del Rey, R.; Alba, J.; Sanchís, V. (2007) Proposal of an empirical model for absorbent acoustical materials based in kenaf. 19th International Congress on Acoustics (Madrid) 2–7 September 2007.

Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809

Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9

Bies, D. A., & Hansen, C. H. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(5), 357-391. doi:10.1016/0003-682x(80)90002-x

[-]

This item appears in the following Collection(s)

Show full item record